
AD-AG5 078 ILLINOIS IUIV AT URBANA-CHAMPAIGN COORDINATED SCIENCE LAB F/6 9/2
TEST GENERATION FOR MICROPROCESSORS.(U)

AY 79 S N THATTE N000179 C-O2
UNCLASSIFIED R-842; EE|hEEEEEEEE
-EnllhnEllEI
iEEEmnEEEEEE

-EEEmnEEEmnEmmmmmmmmmum
-EEmmmEEE-.E
-EEEE-EEEmm.

-i -W *No 7S-2235

rt -COORDINATED SCI-JENYE LABORATORY

0 TES GENERATION
FRMICROPROCESSORS

II

I~UNV SIT APOFQRU1 I.IIS URBANA, ILLINOIS

'Ila80
63 02

i UNCLASSIFED
,SECURITY CLASSIFICATION OF THIS PAGE (When Dote Entered)r REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLEING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. " iENT4 CA-ALOGMU- 7..

4. TITLE (and Subtitle) n ;

TEST GENERATION FOR MICROPROCESSORS Technical Repot

i R-842 ILU-ENG-78-2235

Satish Mukund atte DAAB-07-72-C-0259;/ DAAG-29-78-C-0016Satih .M.unThNt0014-79-C-042

9. PERFORMING ORGANIZATION NAME AN ADORESS 10. PROGRAM ELEMENT PROJECT. TASK
ARA& WORK UNIT~ NUMBERS

Coordinated Science Laboratory 7 R
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

S1I. CONTROLLING OFFICE NAME ANO ADORESS -12.--REP IRT-OATEI ,II) May41079
Joint Services Electronics Program 1 Ei 167

14. MONITORING AGENCY NAME & ADORESS(It different from Controlling Office) 15. SECURITY CLASS. (of this report)

S j.)-- - .. UNCLASSIFIED
ISe. DECL ASSI FI CATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS fContinue on reverse side it necessary end identify by block number)

Microprocessor Architecture Test ProgramsI Architecture Models Complexity of Tests
Functional Level Fault Models

I 20. ABSTRACT (Continue on reverse side If necessary end identify by block number)

7 The goal of this report is to develop test generation procedures for testing
microprocessors in a user environment. Classical fault detection methods based

., I on the gate and flip-flop level or on the state diagram level description of
microprocessors are not suitable for test generation. The problem is further
compounded by availability of a large variety of microprocessors. They differ
widely in their organization, instruction repertoire, addressing modes, data
storage and manipulation facilities, etc. In this report, a general graph-
theoretic model for microprocessors is developed at the register transfer

DD , , ',s 1473 , EDI ION OF I NOV 65 IS OBSOLETE N
UNCLASSIFIED TS P W Dt ,nt ed

L " -- "& I"' m. SC II I PII I I III It.. ...od)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAOE(Whnm Date tntered)

20. ABSTRACT (continued)

- level. Any microprocessor can be easily modeled using information only
about the instruction set and the functions performed by it. This informa-
tion is easily available in the user's manual. A fault model is developed
on a functional level quite independent of the implementation details. The
effects of faults in the fault model are investigated at the level of the
graph-theoretic model. Test generation procedures are proposed which

take the microprocessor organization and the instruction set as parameters
and generate tests to detect all the faults in the fault model. The
complexity of the test sequences measured in terms of the number of
instructions is given. Our effort in generating tests for a real micro-
processor and evaluating their fault coverage is described.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entred)

I1

UILU-ENG 78-2235

I
I TEST GENERATION FOR MICROPROCESSORS

by

Satish Mukund Thatte

This work was supported in part by the Joint Services Electronics

Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract DAAB-07-

72-C-0259, DAAG-29-78-C-0016 and N00014-79-C-0424,

Reproduction in whole or in part is permitted for any purpose

of the United States Government.

Approved for public release. Distribution unlimited.

TEST GENERATION FOR MICROPROCESSORS

Satish Mukund Thatte, Ph.D.
Coordinated Science Laboratory and
Department of Electrical Engineering

University of Illinois at Urbana-Champaign, 1979

The goa of this thesis is to develop test generation pro-

cedures for test.g nicroprocessors in a user environment. Classical

fault detectton methods based on the gate and flip-flop level or on the

state diagram level description of microprocessors are not suitable for

test generation. The problem is further compounded by availability of a

large variety of microprocessors. They differ widely in their organiza-

tion, instruction repertoire, addressing modes, data storage and

manipulation facilities, etc. In this thesis, a general graph-theoretic

model for microprocessors is developed at the register transfer level.

Any microprocessor can be easily modeled using information only about the

instruction set and the functions performed by it. This information is

easily available in the user's manual. A fault model is developed on a

functional level quite independent of the implementation details. The

effects of faults in the fault model ar2 investigated at the level of the

graph-theoretic model. Test generation procedures are proposed which take

the microprocessor organization and the instruction set as parameters and

generate tests to detect all the faults in the fault model. The complexity

of the test sequences measured in terms of the number of instructions is

given. Our effort in generating tests for a real microprocessor and

evaluating their fault coverage is described.

TEST GENERATION FOR MICROPROCESSORS

BY

SATISH MUKUND THATTE

B.E. (Hons.), Birla Institute of Technology and Science, 1975
M.S., University of Illinois, 1977

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1979

Thesis Advisor: Professor Jacob A. Abraham

Urbana, Illinois

i

iii

ACKNOWLEDGEMENT

I wish to express my gratitude to Professor Jacob Abraham for

his guidance and supervision throughout my graduate work. I would also

like to thank Professor Gernot Metze and Professor Edward Davidson for

their encouragement and guidance.

I appreciate the help rendered by Dr. Ken Parker of the Hewlett-

Packard Company, Loveland Instrument Division, Loveland, Colorado. The

TESTAID III fault simulator and the gate level description of the micro-

processor provided by Dr. Parker were indispensable in conducting our case

study consisting of the generation of test sequences for a real micro-

processor and the evaluation of fault coverage. I would also like to

gratefully acknowledge the assistance provided by Dick Norton and Tom Lovett

in this case
study.

I would like to thank Ravi Nair (now with IBM) for many useful

discussions contributing to this thesis. I am also thankful to all my

colleagues at the Coordinated Science Laboratory for providing an intellec-

tually stimulating and enjoyable environment. Finally, special thanks are

due to Mrs. Gertrude Little for typing this thesis.

CCesslt- For

/D zt '

'"

By Id

_A ft'/

iv

TABLE OF CONTENTS

JPage
I. INTRODUCTION ... 1

1.1. Description of the Problem................................ 1
1.2. Thesis Outline .. 4

2. A MODEL FOR MICROPROCESSORS..................................... 7

2.1. Review of Previous Models 8

2.1.1. Gate and Flip-Flop Level Model 8
2.1.2. State Diagram Model 9
2.1.3. Module Level Model 9
2.1.4. The Robach-Saucier Model 10
2.1.5. The Thatte-Abraham Model 13

2.2. A New Model for Microprocessors 15
2.3. An Example Microprocessor 29
2.4. Definitions and Notation 33
2.5. Study of Data Transfers Among Registers 36

3. FUNCTIONAL LEVEL FAULT MODELS FOR MICROPROCESSORS 47

3.1. Fault Model for the Register Decoding Function 47
3.2. Fault Model for the Instruction Decoding and

Control Function .. 54
3.3. Fault Model for the Data Storage Function 58
3.4. Fault Model for the Data Transfer Function 60
3.5. Fault Model for the Data Manipulation Function 62
3.6. Fault Model for Microprocessors 63

4. TEST GENERATION PROCEDURES 64

4.1. Algorithm 4.1: The Labeling Algorithm 64
4.2. Test Generation Procedure for Detecting

Faults in the Register Decoding Function 70
4.3. Test Generation Procedure for Detecting Faults

in the Instruction Decoding and Control Function 80

4.3 1. Order of Test Application 80
4.3.2. Test Generation for f(j/) 84

4.3.2.1. Test Generation for

f(Ij/0) When Z(Ij) 1 I 84
4.3.2.2. Test Generation for

f(I j/0) When 2(1) = 2 87
4.3.2.3. Test Generation Kor ...

f(Ij/0) When A(Ij) = K >t 3 89

Iv

Page

4.3.3. Test Generation for f(Ij/Ik) 95

4.3.3.1. Test Generation for
f(I /Ik) When Z(lj) = 1 95

4.3.3.2. Test Generation for
f(Ij/Ik) When I(Ij) = 2 103

4.3.3.3. Test Generation for
f(Ij/Ik) When I(Ij) = K Z 3 103

4.3.4. Test Generation for f(Ij/lIj+lk) 110

4.3.4.1. Test Generation for f(Ij/lj+Ik)

When I(Ij) = L(Ik) = I 110
4.3.4.2. Test Generation for f(li/Ij+Ik)

When L(Ij) = I and 1(Ik = 2............ 116
4.3.4.3. Test Generation for f(Ij/Ij+Ik)

When I(Ij) = t(Ik) = 2 121
4.3.4.4. Test Generation for f(Ij/Ij+Ik)

When Z(Ij) = 2 (Ik) = K ; 3 127
4.3.4.5. Test Generation for f(Ij/Ij+Ik)

When 1 < 2 (Ij) < K, 1(1k) = K+l,
and K 2 131

4.3.4.6. Test Generation for f(Ij/Ij+Ik)
When K+1 I (Ij) 5 Kma x , and

I(Ik) = K 132

4.4. Test Generation Procedure for Detecting Faults in
the Data Transfer Function and the Data Storage

Function .. 134
4.5. Test Generation Procedure for Detecting Faults in

the Data Manipulation Function 141

5. COMPLEXITY OF THE TEST SEQUENCES 143

6. A CASE STUDY .. 148

7. CONCLUDING REMARKS .. 152

7.1. Summary of Thesis ... 152
7.2. Suggested Future Research 154

REFERENCES .. 157

A PPENDIX .. 159

VITA .. 167I
I
I

1
I. INTRODUCTION

1 1.1. Description of the Problem

jMicroprocessors constitute a very high percentage of today's
large scale integrated (LSI) circuits. The number of microprocessor-

Jbased digital systems is expanding rapidly. This has given rise to an

acute need for sound theoretical tools to develop efficient, thorough

and cost-effective test programs to detect faults in microprocessors at

I all levels: at the component level during fabrication and before

encapsulation, at the chip level before incorporating the microprocessor

* I into a system, and at the system level in the field. These levels

have their own testing requirements and constraints on test development

and application.

Manufacturers of microprocessors are interested in testing

various components and devices on the microprocessor chip during its

fabrication for DC parametric behavior (such as power consumption, noise

sensitivity, fanin and fanout capability, etc.) as well as dynamic

timing problems, etc. Both manufacturers and users are interested in

testing microprocessors at the chip level for its correct functional

operation at the rated speed. Finally, users and system designers are

interested in ensuring that the microprocessor in the system (as well

as the rest of the system) is functioning correctly. Classical fault

detection methods such as the D-algorithm [RBSc67] used for the chip

j and system level testing are employed to detect logical faults defined

at a low level such as a line stuck-at-one or stuck-at-zero [CMMe70]

and [BrFr76]. These faults are associated with lines interconnecting

I
I

2

gates and flip-flops. For microprocessors which contain thousands of

gates, flip-flops and interconnections, classical methods must consider

a very large number of faults making test generation extremely

complicated.

Our approach associates faults with various functions of the

microprocessor (defined at a suitably higher level), such as the

register decoding function, instruction decoding and control function,

data storage function, etc. We give some examples of faults in micro-

processors which we are interested in detecting.

Example 1.1: When the instruction "Load register RI" is

executed, register R2 is loaded instead of register RI. This may happen

due to a faulty register decoding function. The instruction "Interrupt

enable" correctly enables the interrupt, but at the same time the

accumulator is cleared. This can be attributed to a fault in the instruc-

tion decoding and control function. The instruction "Add the contents

of register R to the contents of the accumulator," is not correctly

executed for a few operands due to faults in the arithmetic and logic (ALU)

unit. We associate these faults with the data manipulation function.

A register may fail to store certain data patterns. This fault is

associated with the data storage function.

Another important reason motivating our approach of considering

faults at a functional level is the constraint imposed on testing micro-

processors in a user environment: the test programs need to be generated

witheut knowing the implementation details of the chip at the gate and

flir-flop level. The only source of information which is readily

.3
available is the typical user's manual detailing the instruction set and

describing the architecture of the microprocessor. Using this information

it is easier to define the functional behavior of a microprocessor and

associate faults with the functions as illustrated in Example I.I.

In tnis thesis we are concerned with formulating a sound

theoretical foundation for test program generation for testing micro-

processors in a user environment, particularly at the chip level. We are

interested only in generating deterministic tests to detect permanent

faults which give rise to faulty functional behavior as described in

Example I.I. We will not discuss testing issues related with dynamic timing

problems, faulty DC parametric behavior or manufacturing or design

processes. For these aspects readers are referred to [TEST75]. Of course,

the "solution" that proposes the execution of each instruction for all

possible operands and in every possible sequence for testing microprocessors

is really not a solution. It only serves the purpose of dramatically

pointing out how difficult the problem really is.

We assume that the external tester monitors all the input and

output pins of the microprocessor. In particular, the status pins and

the data and address buses of the microprocessor are continually checked.

Testing is stopped on the detection of any fault, (may or may not be in

real time) since we are not interested in fault location on a chip. The

tester and the external memory which contains the instructions executed

by the microprocessor are assumed to be fault free. Various sophisticated

testers which are commercially available do satisfy the requirements

mentioned above. In this thesis .ill not discuss the design and

implementation or operation of a tester. For information on testers

readers are referred to [Hust74] and [Ande76].

Sophisticated testers available for testing microprocessor

chips cannot be conveniently used for testing microprocessors incor-

porated in a system in the field. Recognizing this difficulty various

schemes such as self testing [Ball79], [LiDo79J and transition counting

[Haye76] have been proposed. A notable instrument suitable for field

testing and diagnosis is the signature analyzer available from the

Hewlett-Packard Company [HPJ077]. These techniques are aimed at the

ability to test systems in the field without requiring a sophisticated

tester; however, their fault detection capability principally hinges on

how thorough the test programs are, again emphasizing the need for good

test generation procedures. Though the test generation procedures

proposed in this thesis assume the presence of a sophisticated tester,

we believe that these procedures can be used, with relatively easy

modifications, for generating tests suitable for field testing. However,

more research is required in this area.

1.2. Thesis Outline

The goal of the thesis is to develop test generation procedures

for testing microprocescors. These procedures should treat the micro-

processor organization and instruction set as parameters. This is

necessary in view of the fact that today's microprocessors differ widely

in their organization, instruction repertoire, addressing modes, data

storage and manipulation facilities, etc.

In Figure 1.1 the thesis outline is schematically illustrated.

In the beginning of Chapter 2 we survey various models and methods of

'

!5

0) 0

0 0

Ma
000

41 00

4O 0 m

00 00 01-

0 0

m 1-4

0

V .J 0
Q to

0 N J Q

1- '4ia 0l

S00

4 0

0 0 0

1. I

6

test generation published in literature. Since none of them is suitable

:-r rszsing microprocessors, we first develop a general graph-theoretic

, .r -izroprocessors at the register transfer level. Any micro-

-27 -an be easily modeled on the proposed lines using information

i-.t :he instruction set and the functions performed by it.

-- r-amtion is easily available in a typical user's manual.) This

-s t. treat the microprocessor organization and the instruction

* drimeters of the test generation procedures. We will illustrate

generate the graph-theoretic model for a small example microprocessor.

Functional level fault models capable of describing faulty

Dehaviir at a higher level are presented in Chapter 3. These models are

quite independent of implementation details of a microprocessor. We will

investigate the effects of these faults on the graph-theoretic model of a

microprocessor. In Chapter 4 we will present test generation procedures

to detect faults in the fault models and prove their fault coverage. The

generation of the test sequence will be illustrated for the example

microprocessor. The generated test sequences comprise valid machine

instructions which are assembled to produce test patterns. This may be

contrasted with the classical methods which may generate bit vectors that

do not correspond to any instruction.

Chapter 5 discusses the complexity of the test sequences measured

in terms of the number of instructions present in these sequences. Chapter 6

reports on the feasibility of our approach. We will describe our effort in

generating tests for a real microprocessor. The results were quite

encouraging. Finally, in Chapter 7, we summarize the thesis and suggest

topics for future research.

.17
2. A MODEL FOR MICROPROCESSORS

Any rigorous exercise of generating tests for fault detection

in a digital system should consist of three activities:

1. Constructing a model at a suitable level for describing the

behavior of the digital system.

2. Developing a fault model Lo define the scope of allowable

faults in the system. A good fault model is usually found

as a result of a trade-off between the need to account for

most of the faults commonly observed in the system and the

need to be able to keep the complexity of test generation

low, and the length of tebts short. The nature of the fault

model is usually influenced by the model used to describe the

system as illustrated in Section 2.1 below.

3. Generating tests to detect all the faults in the fault model.

Microprocessor testing practised in industry seems to be based

on ad hoc techniques such as "testing" each instruction for many operands,

"exercising" various modules in the microprocessor (such as the ALU, shifter,

registers, indexing hardware), or running an application program. A

typical example based on such ad hoc techniques is [ChMc76]. A good

tutorial survey of testing methods and tools used in industry can be found

in (FeeW78]. Other sources of information describing testing strategies

practised in industry are the digests of the annual Semiconductor Test

jSymposiums sponsored by the IEEE Computer Society [TEST75]. These tech-

niques are not based on a general model for microprocessors. Moreover,

they do not consider any specific fault model. Therefore, the technique

followed for testing one microprocessor may be difficult to extend to

I
.. ' ' ° - - . .1 - - I I I[I II[' - I l . .

8

other microprocessors having different architectures. It is also very

difficult to know what faults can or cannot be detected using these

techniques.

We now briefly review various models used in the literature for

describing digital systems. We will comment on their applicability for

modeling microprocessors for the purpose of test generation, particularly

in a user environment.

2.1. Review of Previous Models.

At the lowest level of the modeling spectrum, models are based

on the gate and flip-flop level description of a digital system in order

to describe its logic behavior. Most of the classical work on fault

diagnosis uses these models. At the highest level of the spectrum,

models are based on the so-called "black box" description of the system;

truth tables are used to describe a combinational circuit and state tables

are employed for describing a sequential circuit. As described below, both

of these extremes are unsuitable for modeling microprocessors for the

purpose of generating tests for them.

2.1.1. Gate and Flip-Flop Level Model

The system is described by a logic diagram consisting of gates

and flip-flops. Thus gates and flip-flops are recognized as primitive

elements. This model usually supports low-level fault models such as a

line stuck-at-one or stuck-at-zero model, which associates faults with

lines interconnecting gates and flip-flops [CMMe70] and [BrFr76]. These

models were used to test and diagnose digital computers designed with

discrete components and with a knowledge of the detailed logic description

!9

[Mann66]. For an excellent annotated bibliography on this topic, readers

I are referred to [Sco172].

These models are not very useful for generating tests for LSI

circuits such as microprocessors which contain a very large number of

* gates, flip-flops, and interconnections and which therefore require an

enormnus amount of computation to generate comprehensive test sets. In,

addition, the required gate and flip-flop level description is usually not

available to microprocessor test designers working in a user environment.

2.1.2. State Diagram Model

This model is based on the state diagram description of the

* system, giving its output and the next state for any input and present

state. The system is viewed as a black box and all the implementation

1 details are ignored. Several test methods have been proposed [Koha70] based

on automata identification experiments. Though this model supports a very

general fault model, the length of the test sequence generated grows

f exponentially with the number of inputs and states. This restricts the

use of the method only to toy systems having a very small number of inputs

Iand states and rules out its applicability to microprocessors.
2.1.3. Module Level Model

This model views a digital system as a network of interconnected

modules such as the ALU, register file, multiplexers, demultiplexers,

shifters, control unit, etc. Thus the primitive elements are these

higher level modules instead of gates and flip-flops.

The problem is to generate tests for the entire system using

the available tests for individual modules. This problem as stated above

1_

10

is an extremely difficult and unsolved problem [Powe69] and [BaKi76],

though in [BaKi76] methods are given to generate tests for purely combi-

national systems with some hardware modifications. This model is also

not very promising at its present state of research for generating tests

for microprocessors because microprocessors also contain sequential logic

and no hardware modification is possible in an existing microprocessor

chip.

2.1.4. The Robach-Saucier Model

In view of the difficulties pointed out in the previous sections,

Robach and Saucier [RoSa75] and [RoSa78] proposed the following model

for generating tests for control units of digital systems. Every system

can be decomposed into two subsystems, the control and operative parts,

as shown in Figure 2.1(a). The control part is characterized by a repre-

sentation matrix M as shown in Figure 2.1(b). It has n rows corresponding

to the set of elementary commands c 1,c 2 ''"'Cnil and m columns corre-

sponding to the set of control states (QIQ2,... Q m , such that mi = 1,

if the state Q. activates the command c.i, and m. .j = 0 otherwise. The

operative part can be considered to be made up of a set of independent

functional units. The set of commands C is sent to one or more functional

units.

The diagnosis of the control part is performed through the

operative part which is assumed fault free. The system is capable of

performing a set of "algorithms." For these algorithms, the functioning

of the control part is represented by a flow-chart as shown in Figure 2.1(c)

where the nodes are the different control states of the considered

111

II

Str Stop, Error Signals
Control Part (Z) Status Signals

jControl Comwands (C) (X) Instructions,
Condition Codes

j Operands (P) Operative Part (Z') Results

I(a). A general model for a system.

Q1 Q2 Q3 Qm*I
cl 0 1 0 0

c2 0 0 0 0

3 1 0 0 1

c 0 0 0 1n

(b). Representation matrix M.

A, A2 4

I (c). Control representation for three algorithms Al, A2 , and A3

Figure 2.1. The Robach-Saucier Model.

12

algorithms, and the edges represent the different possible transitions

between these states; the edges are labeled with the transition conditions

(predicates).

A test of the control unit consists of complete identification

of the states (distinguishability of every state from all other states,

and checking the commands generated by each state through each functional

unit), and verfication of sequences. The fault model allows commands to

be abnormally activated or abnormally inactive. Thus this model considers

bzsic control commands and control states as primitive elements rather

than gates and flip-flops generating these commands.

This approach runs into two problems when applied for generating

tests for microprocessors. First, the required information about the

details of control states, basic control commands emitted during a state,

and flow-charts for algorithms (i.e., each instruction of the microprocessor)

may not be available to a test designer working in a user environment.

This problem perhaps could be alleviated by formulating the control states

and commands at a higher level. Even then, the method faces a second

problem; as shown in Figure 2.1(a), it is assumed that the operands

(denoted by P) required for the functional units are directly available,

and the results (denoted by Z') produced by the functional units are

directly observable (possibly with some time delay). On the other hand, in

the case of microprocessors a sequence of instructions needs to be executed,

in general, to provide proper operands to a functional unit (or to store

data in a register) and to read out the result of an operation performed

by it (or to read out the contents of a register). For example, consider an

"Add" instruction which adds the contents of an accumulator and a

I 13

scratch-pad register and stores the result in the accumulator. A "Load

accumulator" instruction is needed to load an operand in the accumulator,

while two instructions may be required to store an operand in the scratch-

pad register: the first to load a general purpose register and the second

to transfer the contents from the register to the scratch-pad register.

Similarly the accumulator can be read out only by executing the "Store

I accumulator" instruction.

Though the Robach-Saucier approach is a step in the right direction

for testing certain digital systems where the assumptions made in their

model are valid, it appears that the limited observability and controllability

of internal registers and logic of microprocessors pose a very difficult

problem in extending the approach to microprocessor testing.

2.1.5. The Thatte-Abraham Model

A methodology for test generation based on a model for a

restricted but "typical" microprocessor organization and instruction set

was proposed by Thatte and Abraham (ThAb78]. The model considers an

organization for the data processing section of microprocessors shown in

Figure 2.2 and allows only limited but commonly observed types of instruc-

tions, such as instructions performing information transfers between the

main memory and level 1 registers, instructions performing various ALU

operations, instructions performing information transfers among level 1

registers, between level I and 2 registers, and among level 2 registers.

The fault model takes into account faults associated with

registers, ALU, buses, and control section such as incorrect decoding of

instructions, missing and extraneous control commands, etc. A drawback

I I

14

Main
Memory

Data and
Address Busses

Data Transfer
Mechanism

ILv I

I L Registers

F 2 .

II Level 1. Registers

Figure 2.2. The Thatte-Abraham model. -

15

of this model is that it cannot generate tests for different microprocessor

organizations and instruction sets, i.e., it fails to treat the micro-

processor architecture as a parameter of test generation.

2.2. A New Model for Microprocessors

In the light of the discussion in Sections 2.1.1 through 2.1.5,

we summarize various requirements for a model suitable for generating

tests for microprocessors.

I. The model should be based on a functional description defined

at a suitably higher level such as the register transfer level. We will

define the model in terms of data flow that occurs between various registers

and the main memory during the execution of an instruction. This allows

us to describe the functional behavior of a microprocessor by using

information about the instruction set and functions performed by it.

Since this information is readily available in a typical user's manual,

this model is quite suitable, especially in a user environment.

2. The model should be able to treat the microprocessor organization

and instruction set as parameters of the test generation procedure, so

that for a given microprocessor architecture it would be possible to

generate tests. This feature is very desirable as today's microprocessor

differ widely in their organization and instruction set, addressing modes,

etc. This trend is bound to continue with newly emerging and powerful

microprocessors.

3. The model should be able to support a fault model describing

faults in various functional primitives such as the data transfer function,

the data storage function, the instruction decoding and control function, etc.,

16

allowing us to describe faulty behavior without knowing the details of

their implementation.

For modeling purposes we partition the instruction repertoire

of the microprocessor into three classes. This classification scheme is

very similar to that proposed by Flynn [Flyn74].

I. Transfer class (denoted by class T):

Instructions of this class perform data transfer between the main

memory and a register (on the microprocessor chip), between an I/0 device

and a register, between registers, and between the main memory locations.

Examples are "Load accumulator," "Transfer register R to register R2 ,"

I/0 instructions, etc.

2. Manipulation class (denoted by class M):

Instructions of this class manipulate the data stored in the main memory

or registers by performing operations like "Shift," "Add," "Or," "Decrement,"

"Compare" instruction, etc.

3. 3ranch :lass dencted by class B):

Class 3 constits . .'' those instructions which do not belong to class T

or M, e : , Ifln: tornaI nd 'unconditional branches," "Jump to subroutine"

and "Return fron. s:rrout~ne i.e., instructions associated with program

sequencing,' 'Interrust enable and disable," "No operation" instruction,

etc.

:he oroposed model is graph-theoretic in nature. Before defining

the model formally, we motivate it by means of an example. We represent

registers of the microprocessor by labeled nodes and instructions by

17I
directed labeled edges where edges represent data* flow during the

fetching and execution of instructions.

Example 2.1: Consider a simple register transfer instruction

II transferring the contents of register R to register R2. The data

flow involved during the fetching and execution of 1 can be repre-

sented in a graph as shown in Figure 2.3. Nodes R3 and R4 represent

the instruction register and the program counter, respectively.

The edge from node R4 to OUT represents the transfer of address of

a main memory location containing instruction II from the program

counter to the address register of the main memory. This edge is

labeled 11 . The edge from node IN to R3 represents the transfer of

instruction 1I from the main memory to the instruction register. This

2
edge is labeled II. While the instruction transfer is taking place,

the program counter is incremented. The self loop around node R4

represents the function of incrementing the program ccunter. This loop

2
is also labeled I The edge from node R to R2 indicates the transfer

of data stored in register R to register R2 , i.e., the intended

3
function of the instruction. This edge is labeled 1I . Notice that

Ithe data flow represented by the edge labeled I takes place before

that represented by the edges labeled 12i chntr, ae lc1

3
before that represented by the edge labeled 131 and so on. Thus the

superscripts on the edge labels indicate a precedence relation in

jtime.

We use data as a generic term referring to the information as well
as its address.

Program

Inlstruction1
register I

XP6456

Figure 2.3. Representation of instructionI

19I
Example 2.1 points out some improvements that can lead to much

more concise and succinct representation of an instruction: we may

represent that data f'ow which is involved only during the execution

of the instruction and not during its fetching. Since the data flow

j involved during -he fetching of every instruction is the same,

no information is gained by representing it for each instruction.

On the other hand the data flow involved during the execution of an

instruction really characterizes the function performed by the

instruction. Thus only the edge from node R to R2 in Figure 2.3 can

be used to represent instruction II .

We now formalize the model. A microprocessor is modeled

by a system graph (S-graph). Let [RI , R , R3 denote the

set of registers in the microprocessor. Set R includes the so-called

general purpose registers, accumulators, scratch-pad registers, on-chip

last-in first-out stack, and the program counter. It also includes

index registers, address buffer register, stack pointer, etc., i.e.,

the registers used in various addressing modes. Included also is the

so-called processor status word containing various processor status bits.

Each register R. is represented by a node (labeled R.) of the S-graph.1. 1

In addition to the nodes representing registers, we incorporate two more

nodes, named "IN" and "OUT" in the S-graph, representing the world

external to the microprocessor, i.e., the main memory and I/0

devices.

Let f l)1i, 12, I3 . .. denote the set of instructions. The

execution of instruction I. causes data flow among a set of registers, and

I
I

20

between the main memory (or an I/0 device) and registers in some

sequence. The data may or may not be manipulated during the flow. We

can represent the data flow during the execution of any instruction I.J

as follows:

I. There exists a labeled directed edge from node Rp to node R qpq

if data flow occurs from register R to register R (with or withoutp q

manipulation) during the execution of T..2

2. There exists a labeled directed edge from node IN to node R.,2

if data flow occurs from the main memory or an I/0 device to register

R. (with or without manipulation) during the execution of I..2 2

3. There exists a labeled directed edge from node R. to node OUT,

if data flow occurs from register R. to the main memory (or its address

register) or an I/0 device (with or without manipulation) during the

execution of I..

If more than one edge is required to represent the data flow

during the execution of an instruction, the flow may occur in a

specific sequence. The exact sequence may not be known to test designers

working in a user environment because the sequence depends on the details

of implementation of the microprocessor hardware. However, it is possible

to deduce the precedence relation in time between the components of the

data flow solely on the basis of logical data dependence, independent

of the details of implementation. We indicate the precedence relation

by means if the labels assigned to directed edges as explained below.

Among the set of edges representing the data flow during the

execution of instruction I., two edges are labeled IP and I, where p < q2 2 2

21

and p and q are smallest such positive integers, if and only if the data

I flow represented by the edge labeled Ip must take place before that

represented by the edge labeled lq in order to preserve the underlying

logical data dependence. Two edges are assigned the same label I i, if

J and only if the corresponding data flows can occur simultaneously given

the necessary number of resources such as buses and functional units, i.e.,

the required hardware parallelism exists. In the presence of some

limitation on hardware resources, the data flow represented by these two

edges may occur in either of the two possible sequences depending on the

I details of implementation. If only one edge is required to represent the

data flow during the execution of instruction 1I, it is assigned a label

I.. It must be stated that this elaborate notation is used only for clarity. .2

in illustrating the data flow sequence and is not really necessary to

generate tests.

Example 2.2: Figure 2.4(a) represents a "Transfer" instruction

I I that transfers the contents of register R to register R2. Figure 2.4(b)

depicts an "Add" instruction 12 which adds the contents of registers RI

and R and stores the result in R3. Note that both edges are labeled I2.

If two separate buses are available to route the contents of registers

SR 1 and R2 to the ALU simultaneously, the data flow represented by these

two edges can take place in parallel. If only one bus is available, the

I contents of either RI or R2 are transferred to the ALU first and stored in

its latch, followed by the transfer of the contents of the other, and

then the addition takes place. The actual implementation determines which

jregister is selected first for data transfer.

I
I

22

R 1 R 2

(a). 1 Tranfr instruction (b). 12 4 Roadd f instruction

Fiue24Repeetto f ntutos

1W

23

Figure 2.4(c) shows an "Or" instruction 13 which forms the logical

OR of the contents of registers RI and R2 and stores the result in R2 . As

explained above, both edges are labeled I3• Figure 2.4(d) shows a "Rotate

left" instruction which rotates the contents of register RI left by

J I bit.

We now explain how to represent instructions which use addressing

modes by these graph-theoretic techniques. A variety of addressing

modes is usually available for instructions for fetching operands from

the main memory and storing results into the main memory. Various

examples of addressing modes are direct, indirect, immediate, indexed,

relative, stack, etc. [GsMc75]. Each addressing mode is characterized by

a sequence of data transfers between registers and the main memory.

Example 2.3: Figure 2.5(a) represents the "Load register RI"

instruction, Il, using the so-called implied or implicit addressing

[GsMc75] where the data to be loaded is contained in the memory location

next to the one storing instruction IV i.e., the address of the operand

is derived by implication. The edge from node R2 to OUT represents the

transfer of the address of the operand from the program counter (R2),

(which is incremented by I by this time and points to the word next to the

one storing instruction Ii), to the main memory address register, and the

edge from IN to RI represents the data transfer from the main memory to

register RI. Figure 2.5(b) represents the "Stack push" instruction 19 which

pushes the contents of R1 into the memory location (top of the last-in

first-out (LIFO) stack maintained in the main memory) pointed to by the

stack-pointer R and then increments the stack pointer. The edge fromR2

node R1 to node OUT in Figure 2.5(b) represents the transfer of dataI

24

Program
counter 2

(a). I.I- Load register RI instruction (b). 12- Stack push instruction

using implied addressing

r -a

Addresses

2 pbuffer er
Ou , register register

(c). 13 Load register R instruction (d). 14 Load register R instruction

using direct addressing using indirect addressing

" - 6457

(e). R,- Add (R),(R2) instruction

Figure 2.5. Representation of addressing modes.

Ad re s uf e

I
.1 25

(to be pushed on the stack) from R1 to the LIFO stack. The R2-OUT edge

I represents the transfer of the address of the top of the stack from

(stack pointer).to the address register of the main memory. Both these
1

edges are labeled 19. The self loop around the node R2 represents the

2
stack pointer incrementing function. It is labeled I because the stack

pointer must be incremented only after the data is pushed so that it

* fpoints to the location on the stack where next data can be pushed.
* Figure 2.5(c) shows how to represent a register load instruction

13 using direct addressing [GsMc75]. As shown in Figure 2.5(c) the address

of the location storing the operand is fetched from the address field of

instruction 13 into the address buffer register R. (represented by the

1
IN-R2 edge labeled I). This address is then sent from R to the address2 3 2

2register of the main memory (represented by the R2 -OUT edge labeled I)

and the operand is fetched from the main memory and loaded into R1

3(represented by the IN-R1 edge labeled 13). The register load instruction

14 using indirect addressing mode can be represented by incorporating two

more edges in Figure 2.5(c) (one more edge from node R2 to OUT and one

more edge from node IN to R2) as shown in Figure 2.5(d).

Figure 2.5(e) shows the representation of a complicated instruc-

tion 15 "Add (RI), (R2)," where the contents of registers RI and R2 denote

addresses of operands. The first operand for this instruction is fetched

from the main memory location pointed to by register R1 and stored in the
data buffer register R (accounting for the RI-OUT edge labeled IlI and the

31
2

IN-R3 edge labeled 15). The second operand is fetched from the main

memory location pointed to by register R and it is added to the contents

of register R3 (accounting for the R2 -OUT edge labeled 13, the other edge3

26

4
from IN'to R labeled 14and the self loop around R3) Finally the result

of the addition (ready in R3) is stored in the main memory location pointed

5to by register R I1 (accounting for the other edge from RI1 to OUT labeled 1

and the R3-OUT edge).

We now illustrate the representation of instructions of

class B.

Example 2.4: Figure 2.6(a) represents a "Jump" instruction I

The edge from the node IN to R1 (representing the program counter)

represents the transfer of the jump address from the main memory to the

program counter. The R -OUT edge represents the transfer of the jump

address from the program counter to the address register of the main memory

achieving the jump in the program sequencing.

Strictly speaking, the R -OUT edge (indicating the jump in the

program sequencing) represents the transfer of the address of a main memory

location for fetching a new instruction. Therefore the RI-OUT edge really

represents a data flow involved during the fetching of the new instruction.

We take the flexible viewpoint that the data flow denoted by R1-OUT edge

could also be considered involved during the execution of the instructions

of class B affecting the regular program sequencing. This viewpoint also

provides a directed edge from the node representing the program counter to

the OUT node, avoiding the awkward situation in which the OUT node would

not be reachable from the node representing the program counter.

Figure 2.6(b) represents a "Jump to subroutine" instruction 12

where the return address for the subroutine is stored in a local register

called the subroutine register (denoted by R2). The program counter is

represented by node R. The IN-R 1 edge represents the transfer of the

jump address from the main memory to the program counter, and the R1-R2

27!
I
I

In In
12

12

Program Program Subroutine
counter counter R2 register

Ii 3

* Out

(a). II- Jump instruction (b). 12- Jump to subroutine instruction

Subroutine
register

R2 I' - Acc =O)

"Z R Program counter R ogram counter

Progra n~ Pr~a

counters u

I2- 44 -45
6 FP-6456

(c). 13- Return from (d). 14- Skip if the (e). 15- No o'eration
subroutine if accumulator inst uction
bit Z is set = zero
instruction instruction

Figure 2.6. Representation of instructions of class B.

1

28

edge represents the transfer of the contents of the program counter to the

subroutine register, i.e., saving the return address. The return address

must be saved before the jump address is transferred from the main memory

to the program counter. The RI-OUT edge represents the jump in the program
1 2 3

sequencing. The labels of edges 1 2 , indicate the precedence

relations in the data flow.

Instructions causing only conditional changes in the program

sequencing can be suitably represented by tagging instruction labels

with the appropriate condition code (predicate). For example, Figure 2.6(c)

represents a "Return from subroutine if bit Z is set" instruction 13'

If Z = 1, the contents of the subroutine register R2, are transferred to

the program counter R The Ri -OUT edge represents the jump (conditional)

in the program flow.

Figure 2.6(d) shows a "Skip if the accumulator equals zero"

instruction 14. The predicate can be denoted by "ACC = 0." The node R

represents the program counter. The self loop around node R denotes the

conditional skip, i.e., the program counter is incremented if the accumulator

equals zero. Figure 2.6(e) shows a "No operation" instruction 15. The

RI-OUT edge represents the transfer of the contents of the program counter

to the address register of the main memory to fetch the next instruction in

the regular program sequencing.

Those instructions of class B which do not change the processor

status word but only change the logic level on some status pins such as

"Interrupt enable" instruction are not represented in the S-graph. 7

29

2.3. An Example Microprocessor

We now illustrate the generation of the S-graph for a small

hypothetical microprocessor. This example will also be used in Chapter 3

to demonstrate the effects of faults on the S-graph, and in Chapter 4 t

illustrate various test generation procedures. Figure 2.7 shows the block

diagram of this microprocessor. It has an accumulator (R a general

purpose register (R2), a scratch-pad :egister (R3', a program counter (R6)

and a subroutine register (R7) to save the return address of subroutines,

allowing a single level of subroutine nesting. A stack pointer (R4) is

provided which points to the top of a LIFO stack maintained in main memory.

An address buffer register (R5) is provided to store the address of operands.

The ALU is capable of performing ADD, logical AND, SHIFT and COMPLE1MENT

operations. The instruction repertoire contains 21 instructions which are

listed in Table 2.1. Though all the architectural features of the example

microprocessor may not be present in any real microprocessor, they have

been carefully chosen to illustrate some of the subtle points involved in

test generation. It may be noticed that instructions IV , 12) 133 153 16,

17, 18Y 115' 1163 117' 118 and 119 belong to class T, instructions 14) 1i1l

12 and 113 constitute class M, while class B contains instructions 19., 10,

114' 120 and 11.

Example 2.5: The S-graph for the microprocessor shown in

Figure 2.7 is drawn in Figure 2.8. The self loops around R4 , labeled 116

and L18' represent the stack pointer incrementing and decrementing functions,

respectively. The self loop around RV labeled I =0), represents

the program counter incrementing function during the "Skip" instruction 110 ,

if the condition "register R I =0" is satisfied. All the other edges of

Figure 2.8 are self-explanatory.

h IL

30

Bi direct onal
Data Sus

Data
Buffer

internal Data Bus

.nstrlucna R Paronrt
RegisterR Onr: a

ii 1K [Sucrourine

~~uC~iO~Pe Res~er K-

Decder!, r ALU 2,dddress 3u ff er
Register (R5)

COntrOl Li.nes Ada ress
Sus

'y y
Status Signals -5o

Figure 2.7. The block diagram of an example microprocessor.

31!

Table 2.1. The instruction repertoire of the
example microprocessor.

1 I - Load register R from the main memory using immediate addressing.

12 - Load register R2 from the main memory using immediate addressing.

I - Transfer the contents of register R1 to register R 2.3 12
S-Add the contents of registers R and R and store the results
41

in register R.
1,

I - Transfer the contents of register R3 to register R.
1 30

6 - Transfer the contents of register R3to register R 1
I - Store register R into the main memory using implied addressing.

17 - Store register R2 into the main memory using implied addressing.

1 8 - Store register R29 into the main memory using implied addressing.

19 - Jump instruction.

110 - Skip if the contents of register R1 are zero.

Ill - Left shift register R1 by one bit.

112 - Complement (bit-wise) the contents of register R.
12 J1

113 - Logical AND the contents of registers R and R2 and store the

result in register R.

I - No operation instruction.
14

* I - Load the stack pointer 1
P) from the main memory using immediate

15 4

addressing.

S116 - PUSH register R I on the LIFO stack maintained in the main memory.

1 - Store register R into the main memory using direct addressing.

17 2
118 - POP the top of the LIFO stack and store it in R.1.

119 - Load register R2 from the main memory using direct addressing.

120 - Jump to subroutine (return address is saved in the subroutine

register R7).

121 - Return from subroutine.

32

n
T2 TI

TI _e
11 4 13 19

18 12 117
20

R, 2
3 118

R3 L i2 T 1. 72Tl 13 1 -17-7

12
1

9 18 72
119

120 4

2
21

,2 Riz())10

Figure 2.8. S-graph of the example microprocessor.

33

2.4. Definitions and Notation

Some registers of the microprocessor can be written (loaded with

required data) or read out (i.e., its contents can be stored in the main

I memory or sent to an I/0 devie) by executing an explicit instruction.

Examples of such registers are accumulator and general-purpose registers.

On the other hand, some registers cannot be written or read out by

executing any explicit instruction. For example, the address buffer

register of Figure 2.5(c) can be written as well as "read out" (on the

address bus) only implicitly during the execution of instruction I

Similarly, the stack pointer (R2) of Figure 2.5(b) can be read out

implicitly on the address bus during the execution of instruction 12 Note

that in Figure 2.8 also, the stack pointer (R4) can be read out only

implicitly during the execution of instructions 116 or 118 , though it is

possible to write it explicitly by executing instruction 1 15. The data

buffer register (R3) of Figure
2 .5(e) can be written or read out only

implicitly. The subroutine register (R7) in Figure 2.8 can be read out

only implicitly by executing the "Return from subroutine" instruction I1

Finally, the program counter can be written only implicitly during the

execution of an instruction of class B which-alters the normal program

sequencing.

We assume that any register can be written (implicitly or

j explicitly) as well as read out (implicitly or explicitly) using a sequence

of instructions of class T or using an instruction of class B. This

I assumption can be easily justified for current microprocessors [Cush77]

IIn terms of the S-graph, there exists a path from the IN node to every node

(representing a register) consisting of edges representing instructions of

I
I

34

class T or class B. Similarly there exists a path from every node to the

OUT node consisting of edges representing instructions of class T or

class B.

Transfer mechanisms such as buses are used to transfer data

between registers, functional units, main memory, and I/0 devices during

the execution of an instruction. Since a test designer working in a

user environment may not know the details of implementation of the transfer

mechanisms, or how they are shared or time-multiplexed among different

data transfers, we "map" a physical transfer mechanism used during the

execution of an instruction onto a set of logical entities called

transfer paths. We illustrate how to perform this mapping by means of

Example 2.6 below. The set of transfer paths associated with instruction

I • is denoted by T(Ij). The motivation for presenting the notion of

transfer paths is to be able to develop a fault model for the data transfer

function independent of the actual implementation details of the transfer

mechanisms.

Example 2.6: With reference to instruction 14 in Figure 2.8,

T(14) contains three transfer paths, two paths for transferring the

contents of R and R2 to the ALU and one path for transferring the output

of the ALU to RI. T(I6) contains only one transfer path for transferring

the contents of R3 to RI, while T(1 9) contains three transfer paths, one

for transferring data (which is actually the address of an operand) from

the main memory to R5, one for transferring the address from R5 to the

address register of the main memory, and the third one to transfer data

from the main memory to R2. T(121) contains two transfer paths, one for

transferring the contents of the subroutine register (R7) to the program

....... M l

35

I counter, and the second one for transferring the contents of the program

counter to the address register of the main memory. -

The set of source registers for an instruction I. is

defined to be that set of registers which provide the operands for

instruction Ij during its execution. This set is denoted by S(I.).

Similarly, the set of destination registers for an instruction I. is2

defined to be that set of registers which are changed by instruction I

during its execution. This set is denoted by D(I.). Extending this

notation further, S(I, I,..., I) = S(I I) J S(9) U.. .J S(I) "

D(II, 12 ,. In) can be defined analogously. IS(I.)I and ID(I.)I denote

the cardinality of the corresponding sets.

Example 2.7: In the S-graph of Figure 2.8, S(I7) (R 1, S(I 4)

R , , S = 1 3 , S(I 2) £INJ, S(1 2 1) = , etc. Similarly

D(17) = [OUTI, D(1 4) D(III) = D(I1 2) = fRL1, D(I1 6) = R 4 OUTI, D(I17)

= [R 5 , OUT}, D(12 0) [R6, R7 , OUT). IS(1 4)I = 2, JD(1 2 0) = 3.

The set of directed edges denoting an instruction I. in the2

S-graph is called its edge set and is denoted by E(I.). READ (Ri) denotes

the shortest sequence of instructions of class T or class B that is

necessary to read out register Ri (implicitly or explicitly). Similarly

WRITE (Ri) denotes the shortest sequence of instructions of class T or

class B that is necessary to write register R. (implicitly or explicitly).

Jm(I)1, IREAD (Ri)1, and JWRITE (Ri)I denote the cardinality of the

corresponding set or sequences.

Example 2.8: For the S-graph shown in Figure 2.8, READ (R) 7

READ (R3) 16, I), READ (R5) = I1 7 , READ (R7) = $121>, etc.

WRITE (R1) (I), WRITE (R) 171 1 WRITE (R7)

(19, 120). Thus, IREAD (R3)1 = 2, 1WRITE (R7)l 2.

!

36

We allow ID(I.)I > 1 only if instruction I. involves data transfer

between the main memory (or an I/0 device) and registers of the micro-

processor during its execution. Thus ID(I)I = 1 for all those instructions

which do not involve data transfer between the main memory and some

registers during their execution. We need not consider ID(I.)I > 1 in the

case of these instructions, because the results of instructions of class M

or T are usually not stored in more than one register. This does not

mean that ID(Ij)I > 1 for every instruction I. which causes data transfer

to take place between the main memory and registers during its execution.

Thus we have constructed a model based on the data flow involved

during the execution of an instruction satisfying the first requirement

given in Section 2.2. The S-graph depends on the instruction repertoire

and the functions performed by it, i.e., the S-graph reflects the archi-

tecture of the microprocessor. As will be described in Chapter 4, this

feature makes it possible to consider the instruction set and organization

as parameters of the test generation procedures. This satisfies the second

requirement given in Section 2.2. The third requirement is related to the

development of a fault model defined at functional level. This is the

topic of Chapter 3.

2.5. Study of Data Transfers Among Registers

In this section we develop a framework to study how the contents

of registers in the microprocessor change when a sequence of instructions

of class T (called by the generic name T sequence) is executed. Specific

occurrences of the T sequence are denoted by symbols T, :1 a2, etc.

A T sequence 7 is specified by listing its component instructions, i.e.,

\1 1)., 1 j2 ... ' I.n ; I. is executed first, followed by I j2, and so on.= ll j2' "'' 3n Jl

37

We denote this by I < ... < I. An instruction may occur more
Il J2 in

than once in a T sequence. Since we are considering data transfers

among registers only, we concentrate only on those instructions of class T

which transfer data among registers, and not between the main memory and

registers. Results derived in this section will be used in Section 4.3.3

for generating tests to detect faults in the instruction decoding and

control function, and for proving their fault coverage.

Definition 2.1: Register R. is l-steD transferrable to

register R. under a T sequence 7 = (, ... I.I > if the contents

of R. before the execution of the sequence become the final contents of

R. at the end of the execution of the sequence. Such a register R. is

denoted as R.(C).
/

Lemma 2.1: Given a T sequence (= \I. , I ... I. a ind
1 J2 in

register R., there exists one and only one register R1
3 3

Proof: Follows immediately from Definition 2.1.

Example 2.9: Consider a hypothetical S-graph shown in Figure

2.9. Consider the T sequence a (I0, I , 12, 13, 1 I5). We have
i4'

(7) = R0, and R0 (O) = R3.

If the T sequence a, in the example above, is executed one

more time the contents of R3 (before the first execution of the T sequence)

would become the final contents of R6. This observation motivates the

next definition.

Definition 2.2: Register R. is K-step transferrable to

register R. under a T sequence 7 = ,i.1, i. 2, '..' ln if the contents

of Ri before the first execution of the sequence become the final contents

thof R. at the end of the K execution of the sequence, where K is the
3

I

38

R2 R3

2 13

R 5

R415

1
14

RO

0

Figure 2.9. An example illustrating Definitions 2.1 and 2.2.

39

smallest such integer. Such a register R. is denoted as RK(7).

Example 2.10: For the S-graph shown in Figure 2.9,
R (C) = R under the T sequence a = (10, Ili 12, 13 14)

If we denote the T-sequence formed by concatenating two

I T sequences a1 and a 2 as a " 2 then in the context of Example 2.10,

I (.) = R2(a) = R Therefore Definition 2.2 may appear ratherR6 6 3.

contrieved and artificial because RR((a .=), where the

* T sequence .a....... is formed by concatenating K copies of T sequence

7. However, as mentioned earlier, results derived in this section will

be used in Section 4.3.3 where test generation procedures are given.

Some of these test generation procedures involve loops containing a

T sequence. When the loop is to be executed K times, it is easier and

more natural to consider the T sequence being executed K times rather

than a long sequence formed by concatenating K copies of the T sequence

being executed once.

M denotes the smallest integer such that if any register is

K-step transferrable to a given register R. under the T sequence]

..., I), then K ! M.i i j 2 ' .l j2i

Lemma 2.2: Given a T sequence 7 = (Il, I , ...,1 jn

and a register R,, there exists one and only one register RK(a), whereJ J

K M.

Proof: Follows from Definition 2.2.

We are interested in finding the relation between M and

n - the number of instructions in a = ll , ''.. Ijn (Recall

that I < I < ... < I. .) In order to do this we first show how to

I

40

1i

find R(9) under a given T sequence U. Consider a set of instructions

A = (. jIjkk E - and D(I.k) = (Rj31. If set A is found to be empty, then,

of course, RI(O) = R because the execution of the T sequence a does not

change the contents of R.. Moreover, M = 1. On the other hand, if set A

is found to be nonempty, then choose Ij E A such that there exists no

other I E A with Ij < Ij , i.e., choose Ij which is executed latest
q p q p

in a but which still belongs to set A. Designate the instruction so

chosen as It . Note that 11 is a unique instruction, and it is the last

instruction in a which changes the contents of R

Consider a set of instructions B1= t.kIj . E a, D(I.k) = S(It),
~k ~kk

and Ik < I1). If set B is found to be empty, then RI(a) = S(at)

because when ItI is executed the contents of S(IZI) are the same as they

were before the first instruction in a was executed. (Note that I1 transfers
1

the contents of S(12 1) to R., and no instruction that occurs after II in

a can change the contents of R j) On the other hand, if set BI is found

to be nonempty, then choose Ij E BI such that there exists no other
p

1. BI with 1I < I, i.e., choose I. which is executed latest in a
iq 1 p jqo p

but which still belongs to set B1 . Designate the instruction so chosen

as 12. Note that 12 is a unique instruction, and I2 <I2 12 I2 1 I

Now consider a set of instructions B2 = fl i E a, D(I)
2 k 1Ikk

= S(12), and Ijk < I2} If set B2 is found to be empty, then

RI(a) = S(I2). This is explained as follows: When 12 is executed the
S22 2

contents of S(I 2) are the same as they were before the first instruction in a

was executed. It2 transfers the contents of S(12) to S(IA) and the contents

of S(12) do not change between the executions of 12 and I1. 1,1 transfers

the contents of S(IZ) to R., and no instruction that occurs after Ii in
1

41

Scan change the contents of R. Thus the contents of S(I2) before the

execution of a become the final contents of R at the end of the execution

of c. On the other hand, if set B2 is found to be nonempty, then choose

I B 2 such that there exists no other I E B2, with I. < Ijq.Jip q 2 P q

Designate the instruction so choosen as I Note that II is a uniqueI 3 13

instruction, and IZ < 2.32

This process of selecting sets A, BI, B2, ... , and instructions

I1 , 1 3, ... can be continued until set B. is found to be empty.
1 2 3

II 2
Since 12 < I < ... < 112 < II, and there are n instruction in U, thei i-I2k

process must terminate in at most n steps, i.e., when set B= i k Ilk 4 ,

D(ik) = S(Ii), and I.j < Ij.I is found empty, the process terminates and
we Ie R I (k L

(we get R.(0) = S(I.). Of course, S(.) could be the same as R in

which case M = 1.

We call the sequence of instructions \I 1, ... , thei l1-l' 1#

j characteristic sequence associated with the transfer of the contents of

R.(0) to R, and denote it by (1. Since each instruction in 01 is a unique

* instruction, the characteristic sequence 01 is also a unique sequence.

Note that 01 is a subsequence of '. Let the initial contents of R.(c)

(i.e., the contents before the first instruction in 7 is executed) be

denoted by d During the execution of , instructions in a1 2 I I
... , II) form a "chain" of instructions transferring the initial contents

of R (7) to R., i.e., 12. transfers data dI from R.(u) to S(11), 12-I i i-l i-1.

transfers data d from S(12) to S(I), ... , finally IZ transfers
i-I i-2 I

data dI from S(11 to R.. Concisely we may say that during the execution

of 7, each instruction in -i transfers data 1 where dI represents the
' I

initial contents of Ri(7).

!

42

Example 2.11: Consider a hypothetical S-graph shown in Figure

2.10. Consider the T sequence a K18, 114' 111 ill 121 16) 19, 131 113'
14, 1 13' I0, 12, 15). Note that instruction 113 is executed twice in

the sequence. Of course, in the S-graph it is represented only once using

the edge from node R4 to node R3. In this example

A = £111, 112 ;I = 112; S(I) = (£R

B1 =18, I1103 , I2 = 1i0; S(1 2) = (R33.

B2 = (16) 191 113)," I3 = 113; S(13) = (R43

B3 £131 143 ; 12 14 ; (2) = R3 3}

I = I ; S(I)4

1 16) 19' 131 ; = 113;) = fR 4 3.

SB = (I," =I 3 ; S(I2) = N63I

£1331 6 3 16 6

B6 = I2, 114 ; 12 = I2 ; S(I) = (R
6 417 27 7 '

B7 = (Ii; I, 8 = II ; S(I8) = fR4

8 8

Hence R1 () = S(18) = R4 . Note that I2 refers to the second

occurrence of 113 in a, while 125 refers to its first occurrence. The

characteristic sequence a1 = KIi' 12) 131 113' 141 113' 1i0' 112) which

is a subsequence of a.

Now we show how to find RK(a) under the T sequence uj

(for K < M). If a register which is 1-step transferrable to RI(a)u
under the T sequence a does not belong to the set £R., R (c)3, it must be

43

IR
IR

I3

I1
R

11 RRI-66
Fiue21.Igah o xml .1

2 44R2
2-step transferrable to Rj and is designated as R.(a). On the other hand,3

if it belongs to the set (Rj. RI(7)) it is 1-step transferrable to R.,

allowing us to conclude that M 1. Extending this argument, if a register

which is 1-step transferrable to RK(,) under the T sequence a does not

belong to the set [Rj, R 1(), R2), RK ()J, it must be (K+l)-step

K+l
transferrable to R. and is designated as R+ (a). On the other hand,3 3

1 2 Kif it belongs to the set tRi. R (C), R (7), R a), .I
.. R.(a)3 it is

p-step transferrable to R., where I ! p ! K. (Refer to Definition 2.2.)3

In this case we can immediately conclude that M = K.

We denote the characteristic sequence associated with the

transfer of the contents of R.(a) to R. (a) by ai, for 2 : i ! M.

Concisely we may say that during the execution of a, each instruction in

a. transfers data d. where d. represents the initial contents of R.(0),

for 2 : i M. This discussion leads to the following lemma.

Lemma 2.3: R (T) is 1-step transferrable to R.' (a), for3 3

2 ! i : M. Some register in the set fRj. RI(a), R(2 R), R.(a)} is

1-step transferrable to RM().7

Definition 2.3: Let I K , ib, ljc, .. . and

('I. (j, I., I., . . .) be two subsequence of a T sequence

=ld., 1.2, ... , . . and a. are defined to be disjoint if the
~i 2 1n 3.

sets [a, b, c, and (p, q, r, . are disjoint, i.e., a, b, c,

S p, q, r, . 0. =
. If (a, b, c, . . } p, q, r, . , # . and

c. are not disjoint. 713

Definition 2.4: Let ai' >j' ... be subsequences of a T
-j jk ' k

sequence 7. Subsequences in the set 7' , j, ' . are defined to be J

mutually disjoint if each pair of subsequences is disjoint. They are

45

nut mutually disjoint if any pair of subsequences is not disjoint. -

Lemma 2.4: A T sequence 7= i , j2, ..., I in can be

partitioned into a set containing at most n mutually disjoint

subsequences.

Lemma 2.5: Subsequences in the set (7I, 2 ., are

mutually disjoint, where aI denotes the characteristic sequence

associated with the transfer of R.(a) to R., and 0, denotes the charac-

teristic sequence associated with the transfer of R.(a) to R (a),

for 2 z i M.

Proof: During the execution of a, each instruction in 7

transfer data d. where d. represents the initial contents of Ri(o) for

I i M. Let us assume the contrary, i.e., subsequences in the set

I 2' ', 7) are not mutually disjoint. Therefore at least one pair~l 2' '"M3

of subsequences, say a. and ak) must not be disjoint. In this case, at

i-ithe end of execution of 0, either the contents of R- (7) are different
2

from d., or the contents of Rk- (a) are different from d . This contradicts
1 k

the assumption that a. is the characteristic sequence associated with the
1

transfer of R.(a) to RI (a), and -I is the characteristic sequence

k k-lassociated with the transfer of R1() to Rk. (a). Therefore subsequences2 2

in the set t 7, 2' . ,)3 must be mutaully disjoint.

Theorem 2.1: M n, where n = the number oi instructions in

the T sequence 7.

Proof: Follows immediately from Lemmas 2.4 and 2.5.

Corollary 2.1: Let the initial contents of registers

R1(17), R2(7), ... RM(7) be d I , d2 , .. ., dM respectively. Then at the

end of Kth execution (I K M) of the T sequence 7, register R. will

!2

" Ir i~ i]l] I1 Il

46

th
cortain d . At the end of i execution (i > M) of the T sequence a, R.K 2

will contain some data belonging to the set [dl, d2 , ... , d M.

Proof: Follows from Lemma 2.3. 7

Corollary 2.2: If register R. contains the same data d at

the end of each of i executions of the T sequence = i 1 I. 2 . I)

for I i !5 n, then at the end of the (n+p)th execution of the T sequence

c, for p 2 1, R. will contain the same data d.2

Proof: Follows from Corollary 2.1, and M ' n.

Corollary 2.3: If register R. contains the same data d at2

the end of each of i executions of the T sequence 0 containing at most
th

K-1 instructions, for 1 9 i K-l, then at the end of K execution of

the T sequence 7, R. will contain the same data d.
P

Proof: Follows immediately from Corollary 2.2. -

I
47

3. FUNCTIONAL LEVEL FAULT MODELS FOR MICROPROCESSORS

In this chapter we present fault models for various functions

j in a microprocessor in accordance with the third requirement cited in

Section 2.2. We develop fault models which are quite independent of the

jimplementation details of the microprocessor. We categorize various

functions in a microprocessor into the register decoding function,

instruction decoding and control function, data storage function, data

transfer function, and data manipulation function. We will present a

fault model for each of these functions at a higher level. We will,

however, point out the underlying fault mechanisms in order to clarify the

reasons for choosing the particular models. We will also describe the

effects of these faults at the level of the graph-theoretic model for a

microprocessor presented in Chapter 2.

3.1. Fault Model for the Register Decoding Function

Registers on a microprocessor chip are typically realized as

small random-access memories (RAM) [INTE75]. They could also be realized as

separate registers interconnected by a network of multiplexers, demulti-

plexers and buses. Various instructions use r~gisters to fetch operands or

address of operands and to store results of operations. Register decoding

refers to the task of decoding the "address" of a register which may be

stored as a specific bit pattern in the instructions involving that

register or which may be generated by the control unit during the execution

of the instructions. We want to develop a fault model for this decoding

function independent of the realization of the decoding mechanism.

48

The register decoding function can be modeled as a mapping fD

from R to I [J , where t denotes a null or nonexistent register. Let

f D(Ri) ' R 'J f denote the set of registers which is the image of R.

under the mapping fD' If there is no fault in the register decoding

function we get f D(Ri) = Ri1, for every Ri E R. Under a fault, if

f (R) = (, whenever register R. is to be accessed (while executing any
Di3

instruction which involves R..), no register is accessed. Obviously if

E fD(Ri) then fD(Ri) = rt because fD(Ri) =P.R, Rk,...9 is meaningless.

If f (Ri) # [then whenever R. is accessed, all the registers in the set
D i L.

f D(Ri) are accessed. By this we mean, whenever R. is to be written with

data d, all the registers in fD (Ri) would be written with data d, and

whenever the contents of R. are to be retrieved or used, the contentsi

formed by the bit-wise OR or AND function (depending on technology) over

the registers of the set f D(Ri) will be retrieved. Under this fault we

allow fD(Ri) # [RIS, for every R. E £.

This situation can be best illustrated by means of a pictorial

representation shown in Figure 3.1. In Figure 3.1(a) the mapping fD is

shown under the condition that there is no fault in the register decoding

function. Under this condition, f is a one-to-one correspondence from
D

9 to R. When there is a fault in the register decoding function f becomes,
D

in general, a many-to-many correspondence from R to i J (P. This is

illustrated in Figure 3.1(b).

We now briefly comment on the fault mechanisms responsible for

faults in the register decoding function. Consider a subset of registers

R' 'Q R which is realized as a random-access memory on the microprocessor

chip. Due to faults in the address decoder in this memory some registers

.1 49

Rin b.oR1

R2 oR2~~~R3°0 -R

\ R-n i -o Rn °
,A. fo

(a). fD is a one-to-one correspondence from R to R if there is no fault
in the register decoding function.

R20 o R?

R3 R-3

Rn tRn

II

fo

k;r P' 6 4 5 9

i (b). fD is a many-to-many correspondence from R to R J t) if there
are faults in the register decoding function.

| Figure 3.1. Representation of the mapping f D"

50

in R' could be decoded as some other registers in R' [NTAb78]. This can

be adequately modeled by a many-to-many correspondence from R' to

' {0. Of course, under this fault a register in R' cannot be decoded

as some other register not in 9'.

In order to rule out the possibility of a register RI being

decoded as another register R2 under a fault, we must know whether R and

R2 belong to different random-access memories realized on the chip, or

we must know of the existence of some mechanism (realizing RI and R2) under

which this fault cannot be present, i.e., we need to know the implementation

details. Our desire is to make the fault model as independent as possible

of the actual implementation. Therefore we allow fD to be a many-to-many

correspondence from R to 9 U (0} under a fault. We are thus considering

the "worst case" behavior under the register decoding faults.

Alternatively registers could be realized as separate registers

and interconnected with a network of multiplexers, demultiplexers and

buses. A typical situation is shown in Figure 3.2, where it is desired to

choose one register from a subset of registers Ri = R . ,R k R for

transferring its contents to a register to be chosen from another subset

of registers 92 = Rk+l'Rk+2 ..,Rml R . The task is accomplished by

using a k-to-I multiplexer for choosing a source register from i' and a

l-to-(m-k) demultiplexer for selecting a destination register from R 2 '

The multiplexer and the demultiplexer receive the addresses of the registers

to be selected from the control unit.

Due to faults in these units the wrong registers may be chosen,

or more than one registers could be chosen. Under some fault in the

control unit, an incorrect register address could be sent to the multiplexer

51

Add ress of a Address of a
Source Register Desti nation Register
from the Control Unit from the Control Unit

k-to- 1-to(m-k
MutpeeReutpee
'R44

Figure~ ~ ~ ~~~~~~R 3..A+1tpee-erutpee ehns
for~~R daatanfr

52

or demultiplexer resulting into the selection of a wrong register. All

these faults can be adequately modeled by a many-to-many correspondence

from 9, to)I U (0}, and another many-to-many correspondence from R2 to

-2 J [0). in this particular implementation, a register in RI may not be

decoded as a register in 9,2' and vice-versa. We avoid all these implemen-

tation dependent details by allowing fD to be a many-to-many correspondence

from R to R 0

At this point one may wonder how a register used to store address

of operands such as R5 and R7 (in Figure 2.8), could be decoded as a

register used to store operands, such as R1 and R2 , particularly in the

light of the fact that the widths of registers used to store addresses

usually differ from those used to store data. This is quite likely in the

following situation.

All registers are realized as a RAM array on the microprocessor

chip. Each word of the RANM is 16 bits in width and can be used as a single

register for storing addresses which are 16 bits in width. A single word

can also be used as a pair of registers for storing data which is 8 bits

in width. This is the way registers are implemented on the INTEL 8080

microprocessor [INTE75].

We now extend the notation developed in Chapter 2. f D(D(I.))

denotes the set of registers formed by making the union of the image sets

of registers in D(I.) under the mapping f . f D(S(I)) can be analogously

defined. Extending this notation further, fD(D(III 2 ,... ,I n))
= fD(D(II)) j fD(D(12)) U ... U f D(D(In)). The set f D(S(11,12'..,n)

can be defined similarly.

53

We now illustrate the effects of faults in the register decoding

J function at the level of the S-graph by means of the following example.

Example 3.1: In terms of the S-graph of Figure 2.8,

R =RI,R 2 ,R 3 ,R 4 ,R.,R 6 ,R7 1. If fD(Rs) (R 1 , register R I will play the

J role of the address buffer register R5 during the execution of instructions

117 and 1 19 Thus under 117, R2 will be read out correctly, but the

contents of register R will be changed instead of that of R5 . If
1 5'

fD(RI) = R21 , when I I is executed R2 will be written instead of RI .

Moreover, 17 will read out R2 instead of R1." If fD(R 2) [RV, R3 , then 18

will read out R1 * R3 , where * denotes the bit-wise AND or OR function

over registers RI and R3 depending on technology. Similarly when 12 is

executed, both R1 and R3 will be written instead of R2 .
if fD(R3) = f , then 15 will not change the contents of any

register, and I will transfer a ONE or a ZERO to R1 depending on

technology, instead of the contents of R3 . If fD(RT) 7 }, the "Jump to

subroutine" instruction 120 will correctly execute the jump in the program

sequencing, but will not save the return address into R7. The fault will

show up when the "Return from subroutine" instruction 121 is executed,

because the program sequence will return to the main memory location

j whose address is ONE or ZERO depending on technology, as a ONE or a ZERO

will be loaded into the program counter (R6) instead of the contents

of R7 •

ONE denotes a binary vector with each of its bits set to logic 1 and
and having its width equal to that of a register, i.e., ONE (11...l);

similarly ZERO stands for (00.. .0).

I

54

If fD(R5) 5 [R, instruction 120 will be executed correctly,

i.e., the jump to subroutine will occur and the return address will be

correctly saved in R7P but now the correct execution of 121 will depend

on whether 117 or 119 were executed within the subroutine. If they were

executed in the subroutine, due to the fault fD(R5) = (R73, the subroutine

register R7 will be changed instead of the address buffer register R5,

resulting into the loss of the return address saved in R Thus I will

cause the program to branch to some location that equals the address of

operard used in the last instruction 117 or 119 executed within the

subroutine.

3.2. Fault Model for the Instruction Decoding and Control Function

The instruction decoding mechanism is shown as a block diagram

in Figure 3.3. Basically it is a decoder whose inputs are the instruc-

tion opcodes and whose outputs correspond to the control signals that

initiate the execution of instructions. For each valid opcode, one

and only one output of the decoder is activated initiating the execution

of one and only one instruction.

Under a fault in the instruction decoding and control function,

the faulty behavior of the microprocessor can be specified as follows.

When instruction I. is executed any one of the following can happen:J

I. Instead of instruction I. some other instruction Ik is

executed. This fault is denoted by f(I./Ik).

2. In addition to instruction Ij, some other instruction Ik is

also activated. This fault is denoted by f(Ij/I +1).

3. No instruction is executed. This fault is denoted by f(i.,'[).

Instruction Opcodes

Jn - 12 iI,

Control Signals Initiatinig the
Execution of Instructions

FQ- 05461

Figure 3.3. Block diagram of the instruction
decoding mechanism.

56

This fault model is strongly motivated by the fact sunmarized

in the following theorem.

Theorem 3.1: If a decoder is realized without any reconvergent

fanout then under a single stuck-at fault its behavior can be formulated

independent of its implementation details as follows: for a given valid

input to the decoder, instead of, or in addition to the expected output

some other output is activated, or no output is activated.

Proof: See the Appendix.

The assumption of no reconvergent fanout in the instruction

decoding mechanism is quite reasonable as it has n inputs and as many

as 2n outputs. We would like to allow the faulty behavior stated

above for each instruction of the microprocessor. However, it makes

the test generation procedures extremely complicated. Therefore we

impose two constraints (given below as 4 and 5) on the decoder behavior

under faults in the instruction decoding and control function.

4. If faults f(/I k) or f(I,/Ij+Ik) are present then instruction

Ik will be correctly executed.

5. If faults f(I /1 k) f(I./Ij+I k) or f(l./0) are present then

faults f(I q/j) or f(q/Iq +1j) cannot be present.

The behavior of a decoder under a single stuck-at fault does not

violate these constraints. This will also be proved in the Appendix. Any

number of instructions could be faulty subject to the set of specifications

1 through 5. As an example, under the fault model, faults f(l1/12),

f(1 3 /1 3 +12), f(14 /12) can exist simultaneously, so can f(1 /12), f(13/1),

f(1 4 /1 6), f(1 5 /1 5 +1 6). Thus, this fault model can account for all single

stuck-at faults in the instruction decoding mechanism.

57

In practice, some faults in the instruction decoding and control

function such as f(l/I k) or f(Ij/I+I k) may be readily detected if a

different number of machine cycles are needed to execute instructions I.

and Ik) or different status signals are emitted during their execution

[(ThAb781.

We now illustrate the effects of faults in the instruction

decoding function at the level of the S-graph by means of the following

example.

Example 3.2: In terms of the S-graph of Figure 2.8, under fault

f(I2/t) , register R2 will not be written, i.e., its contents remain unchanged.

If f(14/16) is present, then the contents of R3 will be transferred to R1

instead of the sum of RI and R2. Under f(17/17+18), the contents of

RI * R2 will be read out, where as before, * indicates the bit-wise

logical OR or AND function depending on technology. If f(19/19+13)

is present, the "Jump" instruction 19 will be executed correctly, but at

the same time the contents of R1 will also be transferred to R2.'

Note that the faults in the instruction decoding and control

function cannot be treated as faults in the register decoding function.

For example, f(I3/ 5) cannot be treated as R2 being decoded as R3 if I is

3executed correctly. Under f(10/121), instead of the "Skip if the contents
exected orretly. Unde f(1 0/12) i stead ote Skpifsthucontens

of RI are zero" instruction the "Return from subroutine" instruction is

executed. Under f(16 /16 +113), (RESULT1) * (RESULT2) will be transferred

to RV where RESULT1 and RESULT2 are the results produced by 16 and 1!3'

I respectively, and * indicates the bit-wise logical OR or AND function

between RESULTI and RESULT2.

I
!

58

Example 3.3: This example is constructed to show how the result

produced by executing a program in the presence of a multiple fault in

the instruction decoding and control function differs from the one produced

by executing the same program under the fault free condition. A part of

the S-graph of a hypothetical microprocessor is shown in Figure 3.4(a).

IV I I I I', I are instructions of class T. Note that instruction

13 reads out register R We investigate how the simultaneous existence

of three faults f(I /1 i) .(1 ,iI+I' , and f(1/1+I') affects the result

produced by the microprocessor when it executes the program given in

Figure 3.4(b). Only three instructions in the loop are shown. The loop

control is given in terms of a high level language construct (FOR loop) I

only for conciseness and ease of understanding.

Assume that the initial contents of registers RI, R R R~4) 5' 6

are ONE, ONE, ONE, and ZERO, respectively. Thus under the fault free

condition, at the end of each of the n iterations of the loop, a ONE is

read out, independent of the value of n.

Under the presence of the multiple fault described above, the

program would correctly read out a ONE at the end of each of the first

three iterations of the loop, but would read out a ZERO instead of a ONE

at the end of each iteration after that. Therefore the program would not

detect the fault if n < 3.

3.3. Fault Model for the Data Storage Function

In this section a fault model for the data storage function is

presented which accounts for the faults in various registers. We allow

any cell of a register to be stuck at 0 or I, and this fault can occur

1 59

I

R1
:R2

12

(a). A part of the S-graph of a hypothetical microprocessor.

FOR K -iTO n DO

BEGIN

II

12

13

(b). The program considered in Example 3.3.

Figure 3.4. Illustrating Example 3.3.

60

with any number of cells of any number of registers. We now illustrate

the effects o- faults in the data storage function at the level of the

S-graph by means of the following example.

Example 3.4: In terms of the S-graph of Figure 2.8, suppose

the first and third bit of register RI are stuck at 1 and 0, respectively.

Then, it would not be possible to store any data vector whose first and

third bits are 0 and 1, respectively, in register RI, by executing any

instruction whose destination register is R If the second bit of

register R7 (subroutine register) is stuck at 0, then it would not be

possible to execute the "Return from subroutine" instruction 121 success-

fully if the return address has its second bit equal to 1. Thus under

a fault in the data storage function some instructions may not be

correctly executed for certain data and address patterns. i

3.4. Fault Model for the Data Transfer Function

In this section a fault model for the data transfer function

is presented which accounts for faults in various transfer paths, i.e.,

buses. Under a fault in the data transfer function for any instruction I.

1. a line in a transfer path in set T(I.) can be stuck at 0 or 1,

2. two lines of a transfer path in set T(I.) can be coupled, i.e.,

they fail to carry different logic values. This can happen due to

metallization shorts or capacitive couilings [ThAb78].

We allow any number of transfer paths associated with any number

of instructions to be faulty in this manner. This fault model is very

general and is also independent of implementation details of transfer

paths. Even though physical transfer mechanisms may be shared between

61

transfer paths in practice, by allowing each transfer path to be faulty,

Iwe are making the fault model independent of implementation details.
I We now illustrate the effects of faults in the data transfer

function at the level of the S-graph by means of the following example.

IExample 3.5: Suppose the transfer path carrying data from the

node R2 to the OUT node (i.e., the main memory) in instruction 18 has

its second line stuck at 0, then instruction 18 cannot be executed

successfully if the data pattern stored in register R2 has its second bit

equal to I. Suppose the transfer path used to carry the result from the

ALU to register R1 in instruction 14 have its first and second line coupled

such that the resulting logic value present on these two lines really

is a logical OR or AND function (depending on technology) of the logic

values that would have been present on these lines, were there no coupling.

Under this fault any ALU result whose first and second bits

differ in the logic values will not be successfully transferred to RIl;

if the coupling results in a logical OR function, the first and second

lines of the transfer path will both carry a logic 1 when they are

supposed to carry a 1 and a 0, or a 0 and a 1. Similarly if the coupling

results in a logical AND function, the first and second lines of the

transfer path will both carry a logic 0 when they are supposed to carry

a 1 and a 0, or a 0 and a 1. Similar faults could be present with the

I transfer paths used to carry addresses. Thus under a fault in the data

transfer function some instructions cannot be correctly executed for

certain data and address patterns.

I
!
!

62

3.5. Fault Model for the Data Manipulation Function

The data manipulation function refers to various functional

units such as the ALU, interrupt handling hardware, hardware used for

incrementing (or decrementing) the program counter, stack pointer or

index register, hardware used for computing the address of operands in

various addressing modes such as indexed and relative, etc.

A microprocessor is not a network of arbitrary interconnections

of these functional units. Therefore we need not really worry about

the problems involved in testing a digital system comprised of a network of

such functional units as mentioned in Section 2.1.3. In fact, recalling

the discussion of Section 2.4 any register of a microprocessor can be

read or written (explictily or implicitly) using a sequence of instructions

of class T, or using an instruction of class B, i.e., the operands

required for an instruction of class M can be stored in the necessary

registers (or are available in the main memory) and the result produced

by it can be read out from the register where it is stored by using

instructions which do not belong to class M.

We do not propose any specific fault model, per se, for the data

manipulation function because of the wide variety in existing designs for

the ALU and other functional units such as increment or shift logic.

We will assume that complete test sets can be derived for the functional

units for any given fault model. The operands necessary to execute tests

for a given functional unit can be stored in the proper registers by

executing instructions of class T or B only, and they do not require the

use of any other functional unit. Similarly the results of these tests

can be read out by using instructions of class T or B only.

W

63

We allow any number of functional units to be faulty at one time.

3.6. Fault Model for Microprocessors

jWe now propose the fault model for microprocessors based on the

fault models proposed in Sections 3.1 through 3.5. At any given time we

Iallow the presence of any number of faults but only in one function
described above (in Sections 3.1 through 3.5). Note that we are allowing

a very general model for microprocessors (as described in Chapter 2).

In addition, if we allow multiple faults in different functions, the

problem becomes extremely complex. in [ThAb78], a restricted model for

microprocessor was considered, (refer to Section 2.5) allowing multiple

faults in different functions. In that case the problem turned out to be

very complex but of manageable proportions.

II
I
I
I

Nip"-

64

4. TEST GENERATION PROCEDURES

In this chapter we present test generation procedures to

generate tests for detecting faults covered by the fault models presented

in Sections 3.1 through 3.5. The first step in developing test generation

procedures is to assign labels to the nodes and edges of the S-graph

under consideration by using the labeling algorithm given in Section 4.1.

Test generation procedures for detecting faults in the register decoding

function, instruction decoding and control function, data transfer and

storage function, and data manipulation function are given in Sections 4.2,

4.3, 4.4 and 4.5, respectively. The fault coverage of the tests is also

proved.

4.1. Algorithm 4.1: The Labeling Algorithm

This algorithm assigns integer labels to nodes and edges. The

label assigned to a node representing register Ri is denoted by I(Ri),

and the label assigned to the edge set E(I.) representing instruction I.J 2

is denoted by 2(I.).

Step 1: Assign a label 0 to the OUT node.

Step 2: K <- 0;

WHILE a node remains unlabeled DO

BEGIN

Assign a label K+l to all unlabeled nodes representing

registers whose contents can be transferred (explicitly

or implicitly) to any register whose node is labeled K by

executing a single instruction of class T or B;

K -K+ I

END

65

Step 3: Assign a label 1 to each edge in the set E(I.) where I. is an

instruction that reads out a register (explicitly or implicitly)

during its execution.

Step 4: If I. is an instruction whose edge set has not been labeled in

step 3 then assign a label (K+I) to each edge in the set E(I.),

where 2(D(I)) = K.

Thus the labeling algorithm first assigns an integer label to

each node of the S-graph. This label (which is equal to IREAD (Ri)I

as will be shown in Lemma 4.1) indicates the shortest "distance" of that

node to the OUT node, i.e., the minimum number of instructions of class

T or B that need to be executed to read out (explicitly or implicitly)

the contents of the register being represented by that node. After

assigning labels to the nodes of the S-graph, the labeling algorithm

assigns labels to the edges representing instructions. In step 4, each

edge in the set E(I.) representing instruction I. is assigned a label

K + 1, if the destination register of I. was assigned a label K in step 1

or 2. Note that in step 4, the edge sets of only those instructions are

labeled which do not cause data transfers from registers of the micro-

processor to the main memory or an I/0 device during their execution.

For such an instruction I, ID(I.)I = I. (Recall the discussion

in Section 2.4.)

On the other hand, the destination set D(I.) of an instruction

1. that reads out (explicitly or implicitly) a register during its

execution may contain more than one register. Since the nodes representing

these registers may have different labels, step 4 cannot be applied in thisI

66

case. In this case we " szz atep 3 to assign a label 1 to each edge in the

set E(I). The choice of the label may be explained by the fact that inJ

this case the OUT node has to be a member of the set D(I.), and step I

assigns a label 0 to the OUT node.

For concise description, we will use the phrase "register R. with1

label K," if the node representing register R. is labeled K. Similarly

we will use the phrase "instruction Ij with label K," if the edge set E(Ij)

representing instruction Ij is labeled K. The phrase "Execute READ (Ri)"

means execute instructions in the READ (Ri) sequence; the phrase "Execute

WRITE (R.)" can be interpreted in a similar fashion.

Lemma 4.1: a) If I(Ri) K, IREAD (Ri)I = K. b) If (Ij) = I,

I. reads out (explicitly or implicitly) a register with label 1.j

Proof: a) Nodes are labeled in step 2 of the labeling

algorithm. A node is labeled I if the register represented by it can be

read out (explicitly or implicitly) by executing a single instruction of

class T or B. A node is labeled 2 if the contents of the register

represented by it can be transferred to a register whose node is labeled I

by executing a single instruction of class T or B, and the former register

(whose node is labeled 2) cannot be read out by executing a single

instruction of class T or B. Thus a register R. whose node is labeled 2
1

can be read out by executing a sequence of instructions of class T or B

containing two instructions and no shorter sequence exists to read it out.

Therefore IREAD (Ri)I = 2. (Recall the definition of READ (Ri) in Section

2.4.) Extending the argument in this fashion it can be easily proved that

a register R. whose node is labeled K can be read out by executing a

sequence of instructions of class T or B containing K instructions and

|1 67

no shorter sequence exists to read it out. Therefore IREAD (Ri) I = K.

.(b) f 2(1 1, 1. must have been labeled in step 3 of the labeling

algorithm, and it reads out a register (explicitly or implicitly) during

its execution. Therefore this register must have been labeled 1 in

step 2.

We now comment on the significance of the labels assigned by

the labeling algorithm. For each register Ri, I(Ri) indicates the minimum

number of instructions of class T or B needed to read out R.. Therefore

1A(Ri) can be thought of as an "observabiity index" for register R i •

)(1I) has a similar connotation. If I(1.) ; 2, 1(1.) - 1 indicates

the minimum number of instructions of class T or B needed to read out

register D(I.). If A(I.) = 1, instruction I. reads out some register with

label 1; thus the effects of execution of instruction I. are directly

observable at the external pins of the microprocessor if (I.) = I.

Various test generation procedures to be presented in the following

sections of this chapter generate tests in such a way that the knowledge

gained from the correct execution of tests used to check the decoding of

registers and instructions with lower labels is utilized in generating

tests to check the decoding of registers and instructions with higher

labels. Thus the fact that a register with a given label can be correctly

"observed" is used to generate suitable tests for correctly observing

registers with higher labels. Recall that a register with a lower label

j implies that it has better observability than the one with a higher label.

These test generation procedures may generate instructions with

jhigher labels to set up proper operands in various registers while

"checking out" instructions with lower labels. Since, as described above,

I

68

the instructions with higher labels are not checked out yet, they may not

be able to set up the required operands successfully. This imposes the

basic requirement on the test generation procedure: the tests must be

able to check for proper execution of every instruction using other

potentially faulty instructions; otherwise certain faults may mask each

other and never be detected. This point will be illustrated by means of

examples in Sections 4.2 and 4.3.

Since each instruction is checked for its proper execution

using other potentially faulty instructions, it is not necessary to devise

some labeling scheme that assigns labels to registers indicating their

"distance" from the IN node which can signify their "controllability index."

The test generation procedures take into consideration the presence of

faulty instructions (which may fail to store required operands in registers,

i.e., fail to control the registers correctly) to be used in checking out

other instructions.

Recall (Example 2.4) that those instructions of class B which

only change the logic level on some status pins of the microprocessor

(e.g. "Interrupt enable") are not represented in the S-graph. Therefore,

they are not labeled by the labeling algorithm. We assign)(Ij) = 1 for

every instruction I. of class B which is not represented in the S-graph.

This assignment can be justified as follows: the effects of these

instructions of class B are directly observable at the external pins of the

microprocessor. Since the instructions which read out registers are

labeled I by the labeling algorithm, it makes sense to assign label 1 to

these instructions of class B.

1 69

Lenmma 4.2: All instructions of class B are assigned label 1.

Proof: Those instructions of class B which are represented in

j the S-graph implicitly read out the program counter or a register

containing the address of an instruction. These instructions are assigned

I label I in step 3 of the labeling algorithm. All the other instructions

f of class B (which are not represented in the S-graph) are also assigned

label I as explained above. -

Recall .that instructions with label I have the highest

observability. Instructionf if class B enjoy the highest observability.

Example 4.1: The labeling algorithm will assign the following

labels to the nodes and edges of the S-graph in Figure 2.8.

Step 1: 2(OUT) = 0.

Step 2: I(R1) .)(R 2) - 2(R4) = 2(R5) = Z(R6) = I(R 7) = 1, i(R 3) 2.

Step 3: 1(17) = 1(18) 2(19) = .(IIO) = (114) = (I16) = (117) -- (18) =

= 2(119) (20) =(121) =.

Step 4: (i) = I(12) = Y(I3) = 2(14) = 2(16) =(1ii) = ,(112) = (113)

2(I15) 2, 2(15) =3.

The contents of the program counter (R6) are read out (implicitly)

on the address bus during the fetching of every instruction, therefore

2(R 6) = I. The contents of the subroutine register (R7) are implicitly

read out on the address bus (by routing the contents through the program

j counter), hence 2(R7) 1- . Note that (I I) = 2(12) = 2, because I I and 12

both use immediate addressing (Refer to Table 2.1.), and ID(II)I = JD(1 2)I .

All other labels are self explanatory.

I

70

4.2. Test Generation Procedure for Detecting Faults in the Register
Decoding Function

The tests generated using the procedure guarantee that

the register decoding function denoted by the mapping fD is a one-to-one

correspondence from R to 9.

This procedure uses two data structures, a queue of registers

and a set of registers which are named Q and A respectively. The queue Q

is initialized with all the registers such that a register R. lies ahead1

of another register R. in the queue, if and only if, L(Ri) £(R.). The

set A is initialized to be empty. In each iteration of the test generation

procedure, set A is progressively augmented by removing the register

lying in the front of the queue Q and including it in set A; now the

register which was second in the queue before the augmentation of set A

lies in the front of the queue, i.e., the queue is updated. The tests

generated so far will assure that at any given stage, registers in set A

have disjoint image sets under mapping fD' The procedure terminates when

set A contains all the registers that were initially in the queue and the

queue gets enipty. At this stage, the generated tests will guarantee that

all the registers have disjoint image sets under mapping fD' establishing

that fD is a one-to-one correspondence. Recalling the discussion in

Section 4.1, the procedure utilizes the knowledge gained from the correct

execution of tests used to check decoding of registers with lower labels

to generate tests to check decoding of registers with higher labels.

ONE and ZERO will be frequently used as operands or addresses

of operands in various test procedures. This choice is arbitrary. We

could have used (1010.. .10) and its bit-wise complement (0101... 01) as

operands or addresses of operands instead.

171

Procedure 4.1 given below generates tests for detecting faulus

in the register decoding function. Note that the test instructions are

generated only in steps 3(a), (b), and (c); other steps perform bookkeeping

tasks.

jProcedure 4.1: Procedure to generate tests for detecting faults

in the register decoding function

Step 1: Initialize the queue Q with all the registers such that

register Ri lies ahead of register R., if and only if,

I(Ri) :
2 (Rj); Initialize the set A as empty.

Step 2: A <- register at the front of Q; Update Q.

Step 3: REPEAT

a) Generate instructions to write each register R. of set A

with data ONE, and the register at the front of Q

- (if there is one) with data ZERO. (The instructions of

the corresponding WRITE (R.) sequences need to be generated.)

b) Generate instructions to read out each register R.

of set A, such that register R. will be read before
3.

register R., if and only if, 2(R.) 2(Rj). (The instructions

of the corresponding READ (Ri) sequences need to be generated.)

c) Generate instructions to read out the register R. at the

front of Q (if there is one). (The instructions of the

READ (R.) sequence need to be generated.)

d) A <- A J Register at the front of Q1.

e) Update Q.

UNTIL Q - empty.

Step 4: Repeat steps 1, 2, and 3 with complementary data.

I

72

Procedure 4.1 describes the test generation procedure at a higher

level. There are many subtle points involved in the execution details

of this procedure, particularly if some registers can be written or read

out only implicitly. These points can be best illustrated by giving

an example. We show how to apply this algorithm to generate the tests

for the S-graph of Figure 2.8 in the following example accompanied

with the explanatory cotments.

Example 4.2: Generation of tests for detecting faults in the

register decoding function for the S-graph of Figure 2.8.

Step 1: Q (- RIR2 R4 R5 R6R7R3; A -

Step 2: A <-- (RI; Q -R2R4R5R6R7R 3

Step 3:

Iteration I

a) I I with operand ONE; 12 with operand ZERO;

b) 17; /Expected output data = ONE/

c) 18; /Expected output data = ZERO/

d) A R- RI, R2 }

e) Q R4 R5 R6R7 R3

Iteration 2

a) 1 with operand ONE; 12 with operand ONE;

115 with operand ZERO; /stack pointer (R4) is

written with a ZERO/

b) 17; 18; /R and R2 are read out; expected output data ONE/

c) 116; /stack pointer is implicitly "read out" on the address

bus; expected output "data" = ZERO/

73

d) A - R1, R2 , R4)

e) Q - RRRR35 6 7 3

f Iteration 3

a) II with operand ONE; 12 with operand ONE;

15 with operand ONE; /R I , R2 , stack pointer (R4) are

written with data ONE/

117 with address of the operand ZERO; /R. is written

implicitly with "data" ZERO/

b) 17; 18; 116; /R and R are explicitly read out while

the stack pointer (R4) is implicitly read out/

c) 117 with the address of operand ZERO; /RI5 is implicitly

read out on the address bus with expected output

"data" = ZERO/

d) A 4 (R, R2 , R4, R51

e) Q - R, R3

Iteration 4

a) I I with operand ONE; 12 with operand ONE;

115 with operand ONE; /RI, R2 , stuck pointer (R4) are

written with data ONE/

117 with the address of operand ONE; /R5 is written

implicitly with "data" ONE/

19 with jump address = LOG I; /program counter is

written implictily with data LOG 1. LOG I is chosen

different from ONE!!
I

74

b,c) LOC 1: 17; /17 is stored in location LOC 1. When this

instruction is fetched, the program counter is

implicitly read out on the address bus; expected

output "data" = LOC 1 # ONE. R is explicitly

read out as 1.7 is executed/

1 8; 1l6; 117 with the address of operand ONE; /R2 is

explicitly read out. R4 and R5 are implicitly read out/

d) A <- R1 , R2, R4, R5, R6 3

e) Q -R 7, R3

Iteration 5

a) 1.1 with operand ONE; 1.2 with operand ONE;

115 with operand ONE; /R , R stack pointer (R4) are

written with data ONE/

117 with the address of operand ONE; /R5 is writter

implicitly with "data" ONE/

1.9 with jump address LOC 2; /program counter is written

implicitly with data = LOc 2/

LOC 2: 120 with jump address = LOC 3; /Note that 10 is

the "Jump to subroutine" instruction, hence

program counter (now containing LOC 2 + 1) is saved

in the subroutine register (R7), and a new jump

address = LOC 3 is loaded into the program counter.

Thus R and R are written implicitly with "data"

LOC 3 and LOC 2 + I, respectively. Choose LOC 3

different from LOC 2 + 1 and also different from ONE/

1 75

b,c) LOC 3: 17; /17 is stored in LOC 3. When 17 is fetched,

the program counter is read out implicitly on

the address bus; expected output "data" = LOC 3.

Thus, 17 is the first instruction in the subroutine.

17 explicitly reads out RI /

18; 116; 17with the address of operand ONE; /R2 is explicitly

read out. R4 and R5 are implicitly read out/

121; /121 is the "Return from subroutine" instruction.

The contents of the subroutine register (R7) are transferred

to the program counter. The next instruction will be fetched

from the location LOC 2 + 1, as LOC 2 + I is the return

address for the subroutine. When this new instruction is

fetched, the subroutine register will be effectively read out

through the program counter/

d) A 2-R I, R2, R4 , R5, R6 , R7j

e) Q -R 3

Iteration 6

a) I with operand ZERO; /1 is stored in location LOC 2 + 1.

is fetched R7 is implicitly read out as explained

I with data ZERO/

T JNE; 12 with operand ONE;

S115 with operand ONE; 117 with the address of operand ONE;

/Ri, R2 , R4 , and R5 are written with "data" ONE/

I
I

76

19 with jump address LOC 4; /the program counter implicitly

written with LOC 4. Choose LOC 4 different from ZERO/

LOC 4: 120 with jump address = LOC 5; /the subroutine register

(R7) is written implicitly with data LOC 4 + I.

Choose LOC 4 + I different from ZERO. When 120 is

fetched the program counter is implicitly read out;

expected output data = LOC 4/

b) LOC 5: 17; 18; 116; 117 with the address of operand ONE;

/R1 and R2 are explicitly read out; R4 and R5 are

implicitly read out/

121; /causes the subroutine register (R7) to be

implicitly read out through the program counter when

the next instruction will be fetched from location

LOC 4 + 1

c) LOC 4 + 1. 16; 17; /R3 is read out using READ (R3) = (I6' 17

sequence; expected output data = ZERO. When 16 is

fetched R7 is implicitly read out as explained above/

d) A - R1 , R2, R, R5, R6, R7, R

e) Q +- empty

Step 4: Repeat steps 1, 2, 3 using complementary data.

The generated test sequence will be I,1 , 2 17) 18, 11, 12)

115. 17 ' 18) 116 ' 117 ' 121 ' 161 17 ' Thus the "writing" process

involved in step 3(a), and the "reading" process involved in step 3(b) and

(c), do involve implicit writing and reading of registers. The whole

procedure requires careful selection of "data", i.e., both the operands

and address of operands. The jump addresses in the "Jump", "Jump to

77

subroutine", and "Return from subroutine" instructions must be carefully

chosen to avoid reexecuting the already executed tests or overwriting

Jthe instructions.
We now present a lemma describing the behavior of a micro-

J processor under faulty register decoding. This will then be used to prove

that the tests generated using Procedure 4.1 will detect any detectable

fault in the register decoding function.

Lemma 4.3: Let READ (Ri) = 'Ikl, I2,..., Ik), and WRITE (Ri)
Im

Pl P2 Pn

a) When R. is written with data d by executing the instructions

in the W;RITE (Ri) sequence, all registers in the set f D(D(WRITE (Ri)))

f (D(Ip, I,2 I)) are written with data d, unless (1). f (D(I))
D p1 p2) p D p.

=Ft for some I E WRITE (Ri), I < S n-1, in which case R. is written

with either a ONE or a ZERO depending on technology, or (2). f D(D(I))
D Pn

= [, in which case the contents of R. remain uncnanged.

b) When R. is read out by executing the instructions in the

READ (Ri) sequence, during the process of reading out Ri all registers

in the set f()) are written with data d and data d
1 2 m-1

is read out, if Ri contains data d, unless fD(S(Ik)) = ktl, for some

I E READ (R.), in which case a ONF or a ZERO will be read out, depending
k. 2.

on technology.

Proof: The lemma follows immediately from the faulty behavior

of the register decoding function fD"

Example 4.3: With reference to the S-graph of Figure 2.8,

READ (R3)) 7 and WRITE (R3) = (Ii, 1 5. When R3 is written with

ata d by executing II with data d, and 15, all registers in the set

I

78

fD (D(WRITE(R 3))) D (D(II, 15)) = fD(D(II)) U fD(D(15)) fD (R) U fD(R 3)

are written with data d, unless fD(RI) [0), in which case R3 is written

with either a ONE or a ZERO, or fD(R 3) (03J, in which case the contents of

R3 remain unchanged. When R3 is read out by executing 16 and 17, all registers

in the set fD(RI) are written with data d and data d is read out, unless fD(Rl)

= [01 or fD(R 3) = , in which case either a ONE or a ZERO is read out. r

Theorem 4.1: The test sequence generated by using Procedure

4.1 is capable of detecting any detectable fault in the fault model for the

register decoding function.

Proof: The proof is b. induction. At the beginning of step 3(a)

of Procedure 4.1, let set A , Ri., ... , .Rk. Let the induction
1 2 k

hypothesis be f D(Ri) f f D(R.2) 0 ... 0 fD (ak) = [), and fD(Ri.) # (},

for each R. E A. At the end of step 3(d) of Procedure 4.1, i.e., when
i.

set A is augmented, let set A = [Ril, Ri , .. '., Ri, .Ik+l. We will

prove that fD(Ri) fD(Ri 2) D..... f (Rik) n f D (Ril = f }, and

fD(Rik+l) #{.

In step 3(a), registers of set A are written with data ONE (ZERO),

and register Ri , which is at the front of the queue, is written with

data ZERO (ONE), by executing* the instructions in the corresponding WRITE

sequences. If fD(Ri k+) = (0, the fault will be readily detected when

appropriate instructions are executed to read out Rik+l in step 3(c), as

it will fail to produce either a ONE or a ZERO following Lemma 4.3. Assume

that for some register Ri. of set A, fD(Ri) f fD(Ri) # If Riz is

written after Ri in step 3(a), the fault will be detected when
k+l

Though strictly speaking Procedure 4.1 is a-test generation procedure
in the proof we are assuming that the tests are executed.

79

Rik+l is read out in step 3(c), since according to Lemma 4.3, all the

I registers in the he sD set fD(Ri) fD(R ik+l)

will be written with ONE (ZERO). Since f D(Ri) f D(Rik+) g fD(Rik+l)

when Ri k+ is read out in step 3(c), it will either produce a ONE

f instead of a ZERO, or a ZERO instead of a ONE. Note that since

2(Ri) S Z(Ri k+), the process of reading out of Ri will not require

routing of R. through R. . Similar arguments apply when R. is
'2)Lk+l :L

written before R. in step 3(a). In this case the fault will be

detected when R. is read out in step 3(c).
'-2

* The basis of induction, i.e., when A = Ri , fD (Ri) # (01, and

when A = Ril (R) n f () { 2 can be readily proved following

the same arguments used so far. Using these arguments, it is guaranteed
n

thatil fD (R . where R2, .. ., R I. Since all the registers

have disjoint image sets under mapping fD' fD cannot be a many-to-one

correspondence. Moreover, since f D(R) # f3 for each Ri E R, fD cannot

be a one-to-many correspondence from 9 to R. Therefore fD is guaranteed

to be a one-to-one correspondence from R to -R. If follows immediately

that the register decoding function (denoted by fD) is free of any

detectable fault. Note that for some registers, even if f D(Rd) # [R., fD

could still be a one-to-one correspondence. For example, we may have

f D(R i) = (R.) and f D(R.) (Ri}. In such a case, the fault is an

undetectable fault.

I
I
I
I

80

4.3. Test Generation Procedures for Detecting Faults in the Instruction
Decoding and Control Function

In this section we present the test generation procedures to

detect faults f(ji/0), f(I./Ik), and f(lj/Ij+1k) for each ordered pair of

instructions I. and I k . We divide the overall task of test generation

into three subtasks depending on which class (T, M, or B) instructions

Ii and Ik belong to. Following this, we first give the order in which

the tests are applied, and then describe the details of test generation.

The overall task of detecting faults in the instruction

decoding and control function can be divided into three subtasks.

subtask 1: Test for fault f(I./0), f(I j/Ik) , and f(Ij/Ij+1k),

where I. E class T, and Ik E class (T U M).

subtask 2: Test for faults f(lj/0), f(/I k) , and f(j/1 +Ik) ,

where I. E class M, and Ik E class (T U M).
subtask 3: Test for faults f(I f(Ij/Ik), and f(I./1j+1k) ,

where I. z class B, and Ik E class (T U M Ij B);

or I. E class (T U M) and Ik E class B.

The basic philosophy behind this task division is to employ a

systematic approach that tackles a complex problem by dividing it into

logically distinct and smaller subproblems.

V
4.3.1. Order of Test Application

Before presenting the details of test generation, we first

describe the order in which the tests are applied. The tests for each

subtask described above are to be executed by the microprocessor under

test in the order given below.

1 81

First we concentrate on instructions with label 1, i.e.,

2 (Ik) = I, and apply tests to detect faults f(ji/0), f(I /1),

and f(I/lj+Ik). Then we apply tests to detect faults f(l jlj+k) ,

where Z(Ij) = I and 2(1 k) = 2. This is followed by tests to detect

faults f(lj/ j+Ik) , where 2 'S (I.) < Kma x and 2(I k) = I. (Kmax

indicates the maximum value of the labels of edges representing instruc-

tions in the S-graph.) Thus we check that all instructions with label 1

* jare decoded correctly, no instruction with label 1 causes additional
execution of an instruction with label 2, and no instruction with a

I label greater than I causes additional execution of an instruction with

label I. This procedure can be easily generalized and is given in a

precise algorithmic form below.

Algorithm 4.2: Algorithm to determine the order of test

application for detecting f(I./O), f(I./I), and f(kjlj+I)

FOR K - 1 TO K DOmax

BEGIN

Step 1: Apply tests to detect faults f(Ij/0), f(I/Ik),

I and f(I / +1 k), where I(lj) = =(Ik K.

Step 2: Apply tests to detect faults f(I / +Ik), where

1 !5)(1j) ! K, Z(I k) = K + 1, and K < Kma x .

Step 3: Apply tests to detect faults f(I /1 +1 k), where

K + I < (l) K , (I = K.

I ~END . (k

Strictly speaking, this order need not be followed during

the actual application of tests, but it plays a very crucial role in

S
I

82

proving that the tests detect faults in the instruction decoding and

control function. Therefore we assume that the tests are applied in the

order given by Algorithm 4.2.

Note that in steps 2 and 3 it is not necessary to check for

faults f(I/0) or f(/I k) because these faults are detected by tests

involved in step 1. We now present an example to illustrate the three

steps of the algorithm.

For concise representation we introduce some notation at this

stage. Let IA, IB, etc., denote sets of instructions. Then f(I AIT)

would denote a set of faults given by (f(li/lj) I I E IA and l. IB3.

For example, let IA = [Ill 123 and IB = (1, 143, then f(IA/IB) =

(f(Il/13), f(1 /14), f(12/13), f(12 /14)} . Similarly f(IA/IA+I B and

f(IA/0) denote the corresponding sets of faults. Needless to say, we do

not incorporate f(li/I.) or f(li/I.+li) in the sets f(I A/ B) or f(I A/IA +IB).

2(IA) denotes the set of labels of instructions in set I.

Example 4.4: This example illustrates the steps of

Algorithm 4.2 in the case of subtask I for the S-graph of Figure 2.8.

Iteration I

Step 1: Apply tests for faults f(I A/), f(I A/IB), and f(A/I A +I B)

where IA
= IB = [17, 18, 116, 17' 118, 119 } , and

-(IA) = 2 (IB) = [13.

Step 2: Apply tests for faults f(IA/IA+IB) where IA = (17) 18) 116'

117, 118, 19), 'B = ('i, 1 23 13$ 14) 16, ill 112' 113' 1153,

and 2(1 A) = [i, (IB) = (2'.

Step 3: Apply tests for faults f(IA/IA+IB) where IA = LII, 12, 132

15$ 16, 13 Is = [i72 18, 116' 117' 1318 , 119 , and

| 83

I (IA) -- , 3}, %IB) = fI}.

Iteration

2:

Step 1: Apply tests for faults f(l A/), f(I A/IB) , and f(I A/IA +1 B)

where IA = [I , 12, 13) 16, 1 15} , 1B =[Il 12' 132 14 16'

1 i , 1 12' 113' 1 15, and (I A) = Z(I) = 2.

Step 2: Apply tests for faults f(IA/IA+IB) where IA = f17' 18, 116'

117, 118, 119, 11 , 12$ 13, 16, 115), I"B 1)5, and

t j<A) = f I, 21, 1(1B) = [3).

Step 3: Apply tests for faults f(I/1I+I) where I - I 5
A A BA 51

fil Ift and
B 1'3. ' 2 3, 14' I6', 112' 113' I15 , a

2(I A) = f3}, 2(IB) = [
z IA (3' 1(B (23.

Iteration 3:

Step 1: Apply tests for fault f(1 5 /0). (Note that 1(1) = 3>)

The next job is to develop the details of test generation for

detecting faults f(Ij/0), f(i/I k), and f(I./I+Ik). These details

depend very heavily on the labels of instructions and their source and

destination registers. Therefore we partition the job into various cases

depending on these labels and present the test generation procedure for

jeach case.
At this stage we make an assumption about the labels of edges

representing instructions. If 1. class M then 1() 2, i.e., if

Z(1.) > 2 then 1. E class T. Recall from Lemma 4.2 that all instructions

of class B are labeled I. Thus the destination of an instruction of

I class M can only be a main memory location or a register with label 1.

This assumption can be easily justified for available microprocessors,I
3

84

since the result of an instruction of class M is usually stored in a main

memory location or an accumulator [Cush77]; on the other hand, the

destination register of an instruction of class T can have any label.

Without this assumption the details of the test generation procedures

become extremely complicated.

4.3.2. Test Generation for f(I/ /)

The details of test generation depend principally on)(I

We consider three cases, namely, case A(l), case A(2), and case A(3),

depending on Z(I.). The suffix A is used to denote that a case belongs

to the details of test generation for f(I /0). These cases are divided

into subcases which are listed in Table 4.1. For each subcase, the

table gives which test generation procedure is applicable and which

theorem proves the fault coverage.

4.3.2.1. Test Generation ror f(Ij/) When) =(IL.l=I

This case is referred to as case A(l) and is divided into

two subcases.

Case A(1.I): OUT E D(I.), i.e., I. is expected to read out aJ J

register with label I (according to Lemma 4.1).

Case A(1.2): I. is an instruction of class B not represented

in the S-graph, i.e., I. only changes the logic level on some status pins.
J

In either subcase the fault detection is easy since I. has the
J

highest observability as signified by ,(l.) = I.

We give the test generation procedures below. It is straight-

forward to derive the tests in terms of the assembly language instructions

of the microprocessor to be tested from the procedures to follow. For

£i

j 85

00

O-4

4-1~

00

0~0

$4Q i 0- -

0 0 0

0 4-4

00

00 0
0

z 0 C' cu

414

4) 0-i m)C))
-4 C)w -,4.4545- -

C14 OC) .14

dc.m 'C0 z 0
000~~a -4C))C

0~~c 4..J000

4.4 k2
COm 4-4-4

00 :Cl m- 04 M 4

1-4 l) a

1-4 -4- CO

CA 9) A),

I..4 m C) a

I 5.4

cc- m0 caC

86

conciseness we say that the microprocessor executes these procedures

instead of saying that the microprocessor executes the tests generated by

these procedures. For the same reason we treat these procedures as if

they are test execution procedures instead of test generation procedures.

We denote various operands for instructions by OPERAND 1, OPERAND 2, etc.,

and various results stored in registers (as a consequence of instruction

execution) by RESULT I, RESULT 2 , etc.

Procedure 4.2:

This procedure is applicable for case A(l.1). It

generates tests to detect fault f(Ij/0) when 1(1j) 1 and OUT E D(I.).

Step 1: Store proper operand(s) in S(I.) such that when I.j is

executed, the expected output "data" is different from the

quiescent logic value on the data (or address) bus.

Step 2: Execute I.. [

Procedure 4.3:

This procedure is applicable for case A(I.2). It

generates tests to detect fault f(I when (.) I and I. belongs to

class B but it is not rapresented in the S graph.

Step 1: Execute the proper instruction to set up the logic value on a

status pin to x (x E [0, 1)) if the instruction Ij under

consideration, when executed, sets up the logic value on that

status pin to 3.

Step 2: Execute I..

87

4.3.2.2. Test Generation for f(I /t).When (I 2

This case is referred to as case A(2). In this case

READ (D(I 1 . Let READ (D(Ij) = \Ik). Of course, 2 (Ik) = 1,

and by definition of the READ sequence Ik £ (T U B) and OUT E D(Ik).

Procedure 4.4:

This procedure is applicable for case A(2). It generates

tests to detect fault f(Ij/0). when)(I.) = 2.

Step 1: Store OPERAND I in D(I.) and proper operand(s) in S(I.)

such that when I° is executed it produces RESULT 1

in D(Ij), and RESULT I # OPERAND I.

Step 2: Read out D(I.) by executing READ (D(I.)).

/Expected output data = OPERAND l/

Step 3: Execute I..

Step 4: Read out D(I.) by executing READ (D(I.)).

/Expected output data = RESULT l/

Example 4.5: This example (depicted in Figure 4.1)

illustrates Procedure 4.4. 1. is an "Add" instruction which adds

the contents of registers R1 and R2 and stores the result in R3.

READ (D (Ij)) = k), 2 (Ik) I and Ik - class T. OPERAND I

can be chosen to be ONE, and RESULT 1 to be ZERO, requiring that

operand ZERO be stored in both RI and R2. Ik is executed to make

sure that R3 does store OPERAND I. This is followed by execution of

Sj and Ik -

. AD-AO-8 078 ILLINOIS UNIV AT URBANA-CHAMPAIGN COORDINATED SCIENCE ILAS F/0 9/2
TEST GENERATION FOR MICROPROCESSORS. CU)

MAY 79 S M THATTE NOO1-79-C-OG24

UNCLASSIFIED R-842 to.-EE2EEE

88

RI R2 .- S(1 1)= {R17R2}

R3 -- D(1) {R 3}

Figure 4.1. Example illustrating Procedure 4.4.

89

Theorem 4.2: Procedure 4.4 detects f(I /0) in case A(2).

Proof: Note that I(I k) = 1 where READ (D(I.)) = (I k).

(Refer to Figure 4.1.) Since the tests are applied in the order

specified by Algorithm 4.2, the microprocessor under test executes this

I procedure after executing the tests required to detect f(I p/),

f(I p/Iq), and f(I p/Ip + q) where (I P) = I(lq) = 1, and f(Iv/Iv+1W)

where Z(Iv) 1 and 2(w) = 2. Therefore, when the microprocessor under

I test executes this procedure it has been already checked that the

READ (D(I.)) = (Ik) sequence can correctly read out D(I.) and its

execution does not cause additional execution of any instruction with

label 2; in particular the contents of D(I.) are not changed after

the execution of READ (D(I.)). Therefore step 2 ensures that D(I.)

stores OPERAND 1. This step is necessary because due to faults

involved in the instructions used to write data in D(I.), RESULT 1

may be stored in D(I.) instead of OPERAND I. If step 2 is not executed,

the fault f(I./) will be masked.

In step 3, I. is executed which is expected to produce RESULT 13

in D(I.). If f(Ij/6) is present, the contents of D(I.) will not

change. Consequently when D(I.) is read out in step 4 the fault will

I be detected.

4.3.2.3. Test Generation for f(I/6) When)(lj) K z 3

This case is referred to as case A(3). According to our

I assumption in Section 4.3.1, E class T. This case is divided into

two subcases.

!

90

Case A(3.1): S(I.) is not the destination register of any

instruction belonging to the READ (D(I.)) sequence. Figure 4.2 illustrates

this case, I(1.) = K > 3, 1(D(I.)) K-1, I(S(I.)) = K, and READ "D(I.))

= IpK, I P , ... , i). Thus it is possible to read out D(I) without

routing the contents of D(I.) through S(I.). In this case we follow

Procedure 4.4. (The same procedure which is used in case A(2).)

Theorem 4.3: Procedure 4.4 detects f(1./0) in case A(3.1).

Proof: The proof follows the same arguments given for the

proof of Theorem 4.2, except for one change. The microprocessor under

test executes this procedure after executing the tests required to detect

f(I p/), f(Ip / q), f(I p/Il I q) where 1 ! 1p(1), 2() K-i, and

f(I v/Iv+w) where I ! A(I v) v K-I and (1) = K. Note that in this case

READ (D(I)) =I , I , ... , I pl as illustrated in Figure 4.2.P'K-I K-

Since 2(D(I.)) K-1, I(I) = i, for 1 : i < K-I.

Therefore, when the microprocessor under test executes this

procedure it has been already checked that the execution of any

instruction Ipi E READ (D(I)) does not give rise to the additional execution

of any instruction with label K. D(I.) can be correctly read out by executing

READ (D(I.)) in step 2 of this procedure, and after the execution of

READ (D(I.)) the contents of D(Ij) are not changed (note that

I(D(I.)) = K-1 and A(1.) = K). All the remaining arguments are exactly

the same as given in the proof of Theorem 4.2. 0

Case A(3.2): S(1.) is the destination register of an instruc-

tion belonging to the READ (D(I)) sequence. Figure 4.3 illustrates this

case; (I.) K a 3, (D()) K-1, (S(I = K-2.
j!L

-wi

9 11

1K-

P1

Fiur 42 Isrtn aeA31 nScin432

92

Write (S(j))
R3 -- S(Is)

'II
R " -' 1 S(Ij)

"PK-2

PK-1

D(1j) R? P-

IPK-3 > Read (S (I j))

P1

Figure 4.3. Illustrating case A(3.2) in Section 4.3.2.

I
| 93

READ (D(I)) = PKl, I ,..., I) and READ (S (I)) = I ,

I .. , Ipl where (Ip) = i for I ! i : K-I. Let I E WRITE(S(I))
PK-3' P' p. S J

I and D(Is) S(I.). Therefore, 2(Is) K-1, and I(S(Is)) = K-I.

Procedure 4.5:

JThis procedure is applicable for case A(3.2). It generates

tests to detect fault f(I /0) when I(1.) = K > 3, and S(Ij) is the

destination register of an instruction belonging to the READ (D(I.))

sequence.

Step 1: Store OPERAND 1 in D(I.) by executing WRITE (D(I.)).

Step 2: Read out D(I.) by executing READ (D(I.)).

/Expected output data = OPERAND l/

Step 3: Store OPERAND2 0 OPERAND 1 in S(Is) by executing WRITE (S(Is)).

Step 4: Read out D(Ij) by executing READ (D(I.)).

/Expected output data = OPERAND l/

Step 5: Execute I and I.. /Refer to Figure 4.3/
s]

Step 6: Read out D(I.) by executing READ (D(I.)).

/Expected output data = OPERAND 2 # OPERAND 1/ i7

Theorem 4.4: Procedure 4.5 detects f(I/0) in case A(3.2).

Proof: 1 ! A(Ip) = i ! K-1, for each instruction Ipi in the

READ (D(I.)) sequence. When the microprocessor under test executes this

procedure it has already executed the tests required to detect f(I /0),

f(I // and f(I /I +1) where i ! 5(1p), Z(l) < K-1, and f(Iv/Iv+1W)

where 1 2(1v)
< K-I and I(1w) = K.

I

94

Therefore, when the microprocessor under test executes this

procedure it has been already checked that the READ (D(I.)) sequence can

correctly read out D(I.) and the execution of any instruction in this

sequence will not give rise to additional execution of any instruction with

label K; in particular the contents of D(I.) and S(I s) remain unchanged.

(Note that A(D(I.)) (S(Is)) K-1.) Moreover, the execution of I s

does not give rise to additional execution of any instruction with

label K, since 2(1) K-1; thus in particular the contents of D(I.)

remain unchanged after the execution of Is

In step 2, D(I.) is correctly read out by executing READ (D(I.))

and it continues to store the operand stored in it, i.e., OPERAND 1,

after this "read out" process. In step 3, S(I) is written with OPERAND 2
5

by executing WRITE (S(I s)). Since I(S(Is)) = A(D(I.)) = K-1, it is

possible to write data in S(I s) without routing it through D(I.) during

the execution of WRITE (S(I s)). Step 4 ensures that D(I.) continues to

store OPERAND 1 after step 3. Moreover, D(I.) and S(I s) continue to

store OPERAND I and OPERAND 2, respectively, after the "read out"

process in step 4.

Since 2(1s) = K-i, the execution of Is in step 5 will correctly

transfer the contents of S(I s) to S(I.), i.e., S(I) now contains

OPERAND 2 0 OPERAND I. Also the contents of D(I.) remain unchanged, since

2(I) K-i and L(D(I)) K-I. After this Ij is executed which is

expected to change the contents of D(I.) to OPERAND2. If f(I/0) exists,

I. will fail to do so and the fault will be detected when D(I.) is read
o i

out in step 6.

95

4.3.3. Test Generation for f(I j/lk)

The details of test generation depend principally on Z(1.) and

I(Ik). We consider three cases, namely, case B(l), case B(2), and

case B(3) depending on I(l.). The suffix B is used to denote that a case

belongs to the details of test generation for f(I./ k). These cases are

divided into subcases which are listea in Table 4.2. For each case, the

table gives which test generation procedure is applicable and which

theorem proves the fault coverage.

4.3.3.1. Test Generation for f(l/I) when Z(j 1 I

This case is referred to as case B(l) and is divided into two

subcases depending on i(I

Case B(1.I): I(Ik) z 2. Since 1(1.) = 1, the results of the

execution of I1. are directly observable while those of Ik are not. Hence

the behavior of the microprocessor as observed at its external pins

under the fault f(l/I k) is the same as it would be under the fault

f(l./0). Therefore Procedures 4.2 and 4.3 given in Section 4.3.2.1 should

be followed in this case.

Case B(I.2): (I) = (Ik = 1. Many of the faults in this

case would be readily detected because I. and Ik have the highest

observability. For example, I. and I may read and write data into the
Sk

main memory during different machine cycles of the corresponding instruc-

tion cycles; or during the execution of I, and I a different sequence of
k

status signals may be emitted on the status pins. Therefore we will

explicitly discuss the detection of those faults which cannot be easily

detected in this fashion. This case can be further divided into two

subcases, namely, case B(l.2.1) and case B(1.2.2) as described below.

96

00 N '.0

ccJ)-.~- -1 4-t -? -

$4 a
OH 0 1 0 0 0 0 C

00 .0a r-

1-1 .1-4- J

u~ ca4 0 00 0 0 0

(v 4) W) u c O 0
~~J0 OW 0 0 0 0 0 0 0 .

U)~ 0 04 =. . . . *
... 4 4) CL 51 4J

0J :-4 cu $4 C4 W
10 p ____0- -

04- C 0 4t () C o.,-4 p)

4-) Q. ca -4 *4C P4J ,

-4 3
4jU*s 04 0-14

4)0 - 0c Z - 1,4 - 1
Z c co 4-W * CU

0 m cCU CU-. O 1 -4 -

,4 CC) cu H 4 c C4 (a 1

w- - - vA
0''
0 10 -14 a) wU~4

4) 0 L 0 5-403 1-' t-4 X'H H
93 -,4 -.-, 41 *) 4 2 *- '' '- . 00

Cd 41 0 ou "Z 0 Z Z03

4) -44 -HiC 10
CUX 4J4 c-J4 144.. 4'- -4

C: %4 4) w c11 0 C UO24 (L) LW 44 (U .0

4-CL4 'IV-' 0 1, .Z PZ'I o 2. z - ci
S.' ~~C 414 oo~~

$4 00 a200

CU4)U ci)

4--4
:3' - W -,4 0

0 0

~-4 .

-- 4 44

-44 I 4

'-4 1 -4w

1 97

The tests generated by Procedure 4.6 for case B(l.2.1) are to be applied

Ibefore those generated by Procedures 4.7 and 4.8 for case B(1.2.2).

Case B(l.2.1): During the execution of instructions Ij and Ik

the results of the operations performed are "read out". The operation

performed could be as simple as a data transfer from a register to the

main memory. Examples of this case are given below.

I Example 4.6: Instruction I. is "Store the contents of register

R I into the main memory using direct addressing," and instruction Ik is

"Store the contents of register R2 into the main memory using direct

addressing."

Now consider another example. Instruction I. is "Add the contents3

of the accumulator and the contents stored at the top of a LIFO stack

(maintained in the main memory) and store the result at the top of the stack,"

and instruction Ik is "Subtract the contents of the accumulator from the

contents stored at the top of the LIFO stack and store the result at the

top of the stack."

Procedure 4-.6:

This procedure is applicable for case B(I.2.1). It
generates tests to detect fault f(I / k) when Z(I.)

= 1(Ik)
= 1 and during

the execution of Ij and Ik the results of the operations are read out.

Step 1: Store proper operands in S(I) and S(I k) such that when I. is

executed RESULT I is read out and when Ik is executed RESULT 2 is

I read out, and RESULT 1 # RESULT 2.

Step 2: Execute Ii. /Expected output data = RESULT 1/

Step 3: Execute I . /Expected output data = RESULT 2/

I
!

98

Theorem 4.5: Procedure 4.6 detects f(I /I) in case B(l.2.l).

Proof: If the proper operands are, really stored in S(Ik) in

step 1 so that RESULT 2 is read out when Ik is executed, the fault will be

detected in step 2 itself, as RESULT2 will be read out (instead of expected

output data = RESULT 1).

On the other hand, if the required operands are not stored in

S(Ik) due to faults involved in the instructions used to write data in

S(Ik) , the fault may not be detected in step 2; the execution of Ik may

read out RESULT 1 as the wrong operands are stored in S(Ik). But in this

case the fault will be detected in step 3 as the execution of Ik will

produce RESULT 1. Note that if f(Ij/I k) is present we assume that Ik is

correctly executed. (Recall the fault model in Section 3.2.)

Case B(1.2.2): During the execution of instructions I. andJ

Ik the results of the operations performed are stored in registers.

(The results are not read out as in case B(I.2.1).) The operation performed

could be as simple as a data transfer from a main memory location to a

register. In this situation the instruction belongs to class T. If the

operaticn involves some data manipulation, the instruction belongs to

class M.

Note that L(I) = k(I) = I. If the instruction I.j or Ik belongs

to class M, at least one of the operands for I . or Ik must be stored ir-

the main memory. (If all the operands for I. and I k are available in

registers we would have Z(Ij), (I k) ; 2. Refer to step 4 of the labeling

algorithm given in Section 4.1.) The address of the operand stored in

the main memory is computed and then transferred from a register holding

A1

W1
99

it to the address register of the main memory. Thus the register storing

the address of the operand is implicitly read out during the executionI
of Ij and I This is precisely the reason to assign label 1 to Ij and Ik * k|

(Refer to step 3 of the labeling algorithm.) As mentioned earlier, the

results of operations performed under I and I are stored in registers.
Sk

If the instruction belongs to class M, the result produced is stored in

a register with label 1. This is consistent with the assumption (regarding

the label of an instruction of class M) made in Section 4.3.1.

If the instruction belongs to class T the data transferred from

the main memory may be stored in a register with label greater than I.

In this situation fault detection may or may not be easy as illustrated

in the following example.

Example 4.7: Let instruction I. be "Load the contents of the
43

memory location pointed to by register R I in register R2 ," and let

instruction Ik be "Load the contents of the memory location pointed to by

register R3 in register R,. Both instructions store the result of their

operation (which is a simple data transfer) in register R2. Even if

I(R2 2 2, fault f(J/I k) can be easily detected by choosing different

addresses (pointers) in R and R If f(j/lkI) is present, the address

stored in R3 will be (implicitly) read out on the address bus instead of

the address stored in R when I. is executed, and the fault will be detected.

f Thus this case is really not different from case B(I.2.1).

We now consider another example where the fault detection is not

so easy. Let instruction I. be "Load the contents of the memory location

pointed to by register RI in register R2 ," and let instruction Ik be

"Load the contents of the memory location pointed to by register R1 in

100

register R3 ." In this case f(IJ/Ik) can be detected by storing different

data in R2 and R3 and then reading out these registers by executing

READ (R2) and READ (R3). If 2(R2) or I(R3) is greater than 1, (i.e., READ (R2)

or READ (R3) contain instructions with label greater than 1) it is

not guaranteed that READ (R2) and READ (R3) sequences can correctly read

out R2 and R3 because the microprocessor under test has not yet executed

tests to detect f(Ip / q), f(p/I p + q) where (Ip), I(q) Z 2. In this

case we treat Ij and Ik as if they have label 2(R2) + 1 and 2(R 3) + I,

respectively, as far as the test generation for faults f(Ij/Ik),

f(Ij/Ij+1k), f(Ik/Ij) or f(Ik/Ik+ I is concerned.

Case B(I.2.2) being considered applies only to those instruc-

tions which store their result in a register with label 1. Depending

on whether the results of I. and Ik are stored in the same or different

registers we divide this case further into two subcases.

Case B(I•2.2.1): The results produced by executing instructions

I. and Ik are stored in the same register. Let this register be designated

as Rp ; furthermore, let READ (R) = (I >. Note that 2(I) = 1. An

example of this case is given below.

Example 4.8: Instruction I. is "Add the contents of theJ

accumulator and the contents of the memory location (next to the one storing

the opcode of instruction I.) and store the result in the accumu.ator,"

and instruction Ik is "Subtract the contents of the accumulator from the

contents of the memory location and store the result in the accumulator."

Procedure 4.7:

This procedure is applicable for case B(l.2.2.1). It

generates tests to detect fault f(I/I k) when 2(1j) Z(Ik , and during

101

the execution of I. and Ik the results of the operations are stored in the

J same register Rp

SteD 1: Store proper operands in S(Ij) and S(Ik) such that when

I is executed RESULT 1 is produced and when Ik is executed

RESULT 2 is pcoduced, and RESULT 1 # RESULT 2

Step 2: If Rp E S(I) !1 S(Ik) then read out register Rp by executing

READ (R) = I p. /To make sure that R contains proper

operand to be stored in step I. The other member of S(I.) or

S(I.) is a location in the main memory./

Step 3: If Rp E S(I. S(ik) then repeat step 2.

Step 4: Execute I..

Step 5: Read out register Rp by executing READ (R) = (i p.

/Expected output data = RESULT 1 / 2

Theorem 4.6: Procedure 4.7 detects f(I/I k) in case B(l.2.2.1).

Proof: If the register R is a member of S(I.) or S(Ik) it

must be ensured that it contains the proper operand to be stored in step I,

otherwise Ik could produce RESULT I instead of RESULT 2 and fault masking

would occur.

The instruction I involved in step 2 will correctly read outp

Rp because (I p) = 1, and the microprocessor under test would have

already executed the tests to detect f(Ip / q) where i(l q I (generated

by Procedure 4.6 for case B(I.2.1)); however, if the fault f(I p/I +1 p)

is present, where '(Ip,) 2 and D(Ip,) -R 1, the contents of R may
p p p p

change after it is read out by executing I . If this happens it will be

I detected in step 3. On the other hand if the contents of R do not change

pI
I

102

.4-

after the first execution of I (in step 2), they will not change afterp

the second execution of Ip (in step 3) either.

In step 4 I. is executed. If f(I./Ik) is present, RESULT2 will

be produced in R in step 4, and it will be detected when R is read
p p

out in step 5. U

Case B(1.2.2.2): The results produced by executing instruc-

tions I. and I are stored in different registers. Let the result

produced by I. be stored in register Rp. Furthermore, let READ (R) K Ip

and 1(I) 1. An example of this case is given below.
p

Example 4.9: Instruction 1j is "Load register R from the

main memory location (next to the one storing the opcode of instruction

I3," and instruction I is "Load register R from the main memory

jk 2

location."

Procedure 4.8:

This procedure is applicable for case B(l.2.2.2).

It generates tests to detect fault f(Ij/Ik) when I(Ij) = I(Ik) = 1,

and during the execution of Ij and I k the results of the operations are

stored in different registers.

Step 1: Store OPERAND I in register Rp and proper operands in S(I

such that when I. is executed RESULT 1 is produced in R

and RESULT i # OPERAND 1.

Step 2: Read out register Rp by executing READ (R) (I p

/Expected output data = OPERAND l/

Step 3: Repeat step 2.

Ste e4: Execute I
-J

103

Step 5: Read out register Rp by executing READ (R p) <I).

/Expected output data = RESULT 1 # OPERAND 1/

Theorem 4.7: Procedure 4.8 detects f(i/Ik) in case B(l.2.2.2).

The proof of this theorem follows the proof of Theorem 4.6

closely and will not be repeated here.

4.3.3.2. Test Generation for f(Il /I) when (.) = 2

This case is referred to as case B(2) and is divided into two

subcases depending on whether or not D(I.) D(I k).

Case B(2.1): D(I.) # D(Ik). In this case under the fault

f(/Ik.), the contents of D(I.) remain unchanged as they would remain

under the fault f(I./b). Hence, the procedure for this case is the

same as Procedure 4.4. Furthermore, using arguments similar to those in

the proof of Theorem 4.2, it can be proved that Procedure 4.4 detects

f(j /Ik) in this case.

Case B(2.2): D(I.) = D(I This case is not treated here because

all the details considered for case C(3.1) in Section 4.3.4.3 apply to this

case.: Procedure 4.17 used to detect f(I./1j+Ik) in case C(3.1) (refer to

Table 4.3) can detect f(I /I) in case B(2.2) discussed here. This will

be pointed out in the proof of Theorem 4.16.

4.3.3.3. Test Generation for f(I.l k) When Z(lj) K a 3

This case is referred to as case B(3). Note that I. belongsj

to class T according to our assumption in Section 4.3.1. This case

can be further divided into two subcases depending on whether or not

D(I.) D(Ik).

104

Case B(3.1): D(I) #D(Ik In this case under the fault

f(lj/Ik), the contents of D(Ij) remain unchanged as under the fault

f(I./0). Hence, the procedures for this case will be the same as

Procedures 4.4 and 4.5. Note that Procedure 4.4 is applied in case A(3.1)

and Procedure 4.5 is applied in case A(3.2). Using arguments similar

to those in the proofs of Theorems 4.3 and 4.4, it can be proved that

Procedures 4.4 and 4.5 detect f(IJ/Ik) in this case.

Case B(3.2): D(I.)). Note that I(I) t(I K, and

Z(D(I ZD(I k) K-I. Therefore no instruction in the READ (D(I.))

sequence can have a label greater than K-I. This case is illustrated in

Figure 4.4. Note that READ (D(I.)) =(IK I , ... , where :
A(I = i, for I ! i T K-1. Depending on I(S(Ik)) the case can be further

divided into two subcases. Case B(3.2.1) applies when L(S(Ik)) < K, and

case B(3.2.2) applies when L(S(Ik)) = K. Note that i(S(Ik)) ?I K,

since l = K and Ik belongs to class T. (Also refer to the labeling

algorithm given in Section 4.1.)

Case B(3.2.1): t(S(Ik)) < K. In this case the instruction I

does not belong to the READ (S(I sequence. (This will be proved in

the proof of Theorem 4.8.)

Procedure 4.9:

This procedure is applicable for case B(3.2.1). It generates

tests to detect fault f(I /Ik) when A(I) = (I = K z 3, D(Ij) = D(Ik),

and i(S(Ik)) < K.

Step I: Store OPERAND lin S(I.) and OPERAND 2 in S(Ik such that

OPERAND I # OPERAND 2.

Step 2: Execute I.jJ

I

1 105

I

D(Ij)-(Ik)

P2.

I

PK- 2

I I -2 >Read (D(I1))

1 1

jFigure 4.4. Illustrating case B(3.2) in Section 4.3.3.3.

I
I
I

106

Step 3: Read out S(Ik) by executing READ (S(I k)) .

/Expected output data = OPERAND 2/

Step 4: Read out D(I) by executing READ (D(Ij)).

/Expected output data = OPERAND 1/

Theorem 4.8: Procedure 4.9 detects f(lj/l k in case B(3.2.1).

Proof: Note that L(Ik) = K. Since L(S(Ik)) < K, no instruction in

the READ (S(Ik)) sequence can have a label greater than K-1, implying that

I k f READ (S(I k)) . Therefore READ (S(I k)) reads out S(Ik) without

routing it through D(I) = D(Ik).

When the microprocessor under test executes this procedure, it

has already executed the tests required to detect f(Ip /0), f(Ip /q),

and f(I I +1) where 1 1(1), I(1) a K-i, and f(I /I +I) where
p p q p q v vw

1 (I v) v K-i and i(lw) = K. Therefore, when the microprocessor under

test executes this procedure it has already been checked that the

READ (D (I1) and READ (S (Ik)) sequences correctly read out D(I.) and S(Ik

respectively. (Recall that no instruction in the READ (D(I.)) or

READ (S(Ik)) sequences can have a label greater than K-1.) Moreover,

after the execution of these sequences the contents of D(Ij) and S(Ik

do not alter.

In step 2, 1. is executed and it is expected to produce OPERAND I

in D(Ij). If f(I / k) is present, OPERAND 2 will be produced in D(I.)

instead of OPERAND I, provided S(Ik) really contained OPERAND 2 when Ij

is executed. In this situation the fault will be detected in step 4.

(Note that in step 3, READ (S(Ik)) reads out S(Ik) without routing it

through D(I.j D(Ik).) On the other hand, due to faults involved in the

instructions used to write data in S(Ik), OPERAND 2 may not be stored

107

in S(Ik) in this case the fault will be detected in step 3 itself. -
k'

Case B(3.2.2): Z(S(T K. In this case I E READ (S(Ik)).

Procedure 4.9 used for case B(3.2.1) cannot be used in this case

because in step 3, READ (S(Ik)) will read out S(Ik) by routing it through

D(Ij) --D(Ik), destroying its contents.

Procedure 4.10:

This procedure is applicable for case B(3.2.2). It

generates tests to detect fault f(Ij/Ik) when 2(1) = L(tk) K Z 3,

D(Ij) - D(Ik), and)(S(Ik)") = K.

Step I: Store OPERAND I in S(I.) and OPERAND 2 in S(I) such that

OPERAND 1 # OPERAND 2.

Step 2: For i (- I TO K DO

BEGIN

Execute I

Read out D(I.) by executing READ (D(I.)).

/Expected output data = OPERAND I/

END

Step 3: Execute Ik .

Step 4: Read out D(Ik) by executing READ (D(Ik)) READ (D(I.)).

/Expected output data = OPERAND 2/

Theorem 4.9: Procedure 4.10 detects f(I /I) in case B(3.2.2).
j k

Proof: In step 2 of Procedure 4.10, register D(I) is read

out by executing READ (D(I)) = (InK- I , Il . (Refer to

Figure 4.4.) Recall that I(l.) (Ik) = K, and Z(Ii) = i, for

1 ' i ! K-I. When the microprocessor under test executes this procedure,

J

108

it has already been checked that f(I /0), f(I I q and f(Ip /p + q do

not exist, where 1 1(1), I(lq) < K-I. Therefore, D(I.) can be correctly
p qJ

read out by executing READ (D(I.))

If OPERAND2 is really stored in S(Ik) in step 1, the fault

f(I /Ik) will be detected when D(IT) is read out during the first
kJ

iteration of step 2, since OPERAND2 will be read out instead of OPERAND I.

On the other hand, due to the faults involved in instructions used to

write data in S(I)k, OPERAND 1 may have been stored in S(Ik). In this

situation the fault will not be detected during the first iteration of

step 2. We now prove that it is necessary and sufficient to repeat the

loop in step 2 K times, where IREAD (D(Ij))I = K-I.

Sufficiency: So far the microprocessor under test has not

executed the tests to detect f(Iv/Iv+Iw), where 1 r I(Iv) < K-1 and

K+I S Z(w) Ka. If a fault f(I /I + I) is present, where
w max p. P. p.

I E READ (D(I.)) and K+l - I(I) S' Kax, it has yet not been detected.

Consider a sequence of instructions (I , , I , , ... , I !) where I pPK-I' PK-2P i

belongs to this sequence if and only if the fault f(/I p + I P is

present, for I ' i < K-I. Since K+1 ! 9(1 ,) < K and K > 3, I ,

belongs to class T according to our assumption in Section 4.3.1.

Therefore, we designate the sequence (I , , I , , ... I , as the T
PK-l PK-2 ' P

sequence a'. Note that there are at most K-i instructions in a'. Thus

when the READ (D(I.)) sequence is executed in step 2, the T sequence a'

is also executed in addition. Consider the register which is I-step

transferrable to S(Ik) under the T sequence 7'. The contents of this

register before the execution of READ (D(Ij)) in the first iteration of

step 2 will become the final contents of S(Ik) at the end of the first

'I .1 109

iteration of step 2. This may alter the contents of S(Ik).

I During the first K-I iterations of step 2 READ (D(I.)) is

executed K-I times, and so is the T sequence a'. If register S(Ik)

contains OPERAND 1 at the end of each of i iterations of step 2,

J(i.e., at the end of each of i executions of the T sequence u', for

1 ' i K-l), then by Corollary 2.3, at the end of the Kth execution of

* the T sequence a', S(Ik) will contain OPERAND 1. Recall that there are

at most K-1 instructions in the T sequence u'. If this is so, the

fault will be detected in step 4 as OPERAND i # OPERAND 2 will be read

out.

On the other hand, if at the end of any of the first K-1 iterations

of step 2, S(Ik) contains data different from OPERAND 1, the fault will be

detected in the next iteration of step 2 when D(I.) is read out by

executing READ (D(Ij)), as the output data will be different from OPERAND 1.

Necessity: Let the loop in step 2 be repeated only p times,

where 1 ' p ' K-1. (Recall that K..- 3.) Consider the register which is

p-step transferrable to S(Ik) under the T sequence a'. Since there can

be as many as K-1 instructions in a', such a register can exist (from

Theorem 2.1). If this register contains OPERAND2, and S(Ik) and each

register which is j-step transferrable to S(I k) (1 j < p-l) under the

T sequence a' contains OPERAND I at the beginning of the first iteration

I of the loop, then the contents of S(Ik) will be equal to OPERAND 1 at the

end of each of i iterations of the loop, for I ! i : p-I, and they will

become OPERAND 2 at the end of the p iteration of the loop. (Refer to

j Corollary 2.1.)

7

110

Therefore, OPERAND 1 will be read out during each of p iterations

of the loop in step 2, and OPERAND2 will be read out in step 4, as expected.

Thus the fault may remain undetected if the loop in step 2 is repeated less

than K times.

4.3.4. Test Generation for f(I/ I+Ik,

The details of test generation depend on Z(j) and I(Ik).

We consider six cases, namely, case C(l) through case C(6). The suffix C

is used to denote that a case belongs to the details of test generation

for f(I /I +Ik). These cases are divided into subcases which are listed

in Table 4.3. For each case, the table gives which test generation

procedure is applicable and which theorem proves the fault coverage.

4.3.4.1. Test Generation for f(L/Ii L+Ik) When ___ Ik _I

This case is referred to as case C(l). As in the case B(I.2), many

faults in this case would be readily detected because I. and Ik have the

highest observability. This case can be divided into two subcases, namely

case C(I.I) and case C(l.2), exactly in the same way case B(1.2) was divided

into case B(I.2.1) and case B(1.2.2). (Refer to Section 4.3.3.1.) The tests

generated by Procedure 4.11 for case C(1.1) are to be applied before those

generated by procedures for case C(l.2).

Case C(1.1): During the execution of I and Ik the results of

the operation performed are "read out".

Procedure 4.11:

This procedure is applicable for case C(1.1). It generates

tests to detect f(j/Ij+lk) when I(I) (Ik) I 1 and during the execution

of I. and I k the results of the operations are read out.

000

3-4 -4-4-iIv

v 00

0O 0 0a 00

C14 CYU 3-0 -
ol -4 4-~'400C

4J (VJ '443 4

0U j cu~ w Uv L
w- 3:w-4 4

42 .44 0..4.J0-1 CO
0

T30 %

4JJ 23 -6A CO34 u~ u2- 0." 0.,-

"0 j CO 443- 4lO. 0 0
3-1 3.J0 a3U 4J A4 A406

-4 ~ - 1 -W.C .COC O

CO~~ ~ 0 07102 C C

cu - -a cu__ w.~ 4-J,- 0~
0C CL -. 4 L-4 0 0

O ,o4 LW 4

0W ui u 1

00 2 : zo "oC .4. coi

CCO 204 CU'C CU'C 0C $4 4

0 r-4 CO24 -mO W U U0W-

CO C al '012 0 CD 0 0acuc

-:1vC 4.1.4 0''C 1 , 4JC 4'i' -td 4 3-3C0. COII-4 3-4 COCO '024 m
(U 4 2 CC4 0.~ 2m

(D5 CU! W] I C13

0i z- L64

0 ~~~ 0 VC

"0 21 M- 4J

ca (3) 4)-) $ I. 4

x~ 1)~ x 0 wuI1 4 (4 C)A)I

112

00 0 4 r,-4 rs-

.=-4 - CN C4'-
02 41H)-1 ~-1

wI r. ci w) H) H0H

,a 0 - 0 0 0 0 0 0 w.4
-% C-4~ w) :3 wi a) Hi (U w w w

+ 441- -

Hii H.- 0
-,4 u.. csi C-.J

w -r1

Hi Q-d "o Q) H) H) Hi
z10 0 z Z >N u)

Cu
u

w)
E-4 P.. 044 4 4

00

00

41 1Li

Hi- I - -

44 ca

0 0 ~ 0 4
-44 Cu4

co cn U3 C/) C

-4 \A - - 4C

H)41 ,

w) C4 -4 0

1 1\A'4-
4.o -4 +

co Cco *'ai ~ A'A+ H-

-W4
2

Cu QI (D 04

_-1 C-) u3 a)Cu 0

CC~~.i

co \A 4 Cu C4 _ __;H

C-) -44 c

113

Step 1: If possible, store proper operands in S(Ij) and S(I such that

when Ij is executed RESULT I is read out and when Ik is executed

RESULT 2 is read out, and (RESULT 1) V (RESULT 2) # (RESULT 1).

/V denotes the bit-wise logical OR function/

Step 2: Execute I.. /Expected output data = RESULT 1/

Step 3: Execute I /Expected output data = RESULT2 /

Step 4: If possible, store proper operands in S(Ij) and S(Ik) such that

when I. is executed RESULT 3 is read out and when I. is executed
I K

RESULT 4 is read out, and (RESULT 3) A (RESULT 4) # (RESULT 3).

/A denotes the bit-wise logical AND function/

Step 5: Execute I.. /Expected output data = RESULT 3/

Step 6: Execute Ik' /Expected output data = RESULT 4/

The underlined phrase "if possible" in steps I and 4 may

come as a surprise. However, it may not be possible to satisfy conditions

given in both the steps due to the nature of the operations performed

under the instructions I and I . The following example illustrates the

point.

Example 4.10: Let instruction I. be "Store the contents of

register R1 into the main memory location (next to the one containing

the opcode of instruction Ij)," and instruction Ik be "Perform the logical

AND of the contents of registers R I and R2 and store the result into the

main memory location." The requirement in step 4 of Procedure 4.11 can be

satisfied by storing a ONE in R I and a ZERO in R2 so that under I ja ONE

is read out and under Ik a ZERO is read out, and (ONE A ZERO) = ZERO # ONE.

114

On the other hand, no operands wculd satisfy the requirement

in step 1. This can be easily proved. Let OPERAND 1 and OPERAND 2 be

stored in R1 and R2 respectively. I. will read out RESULT I = OPERAND I

and I k will read out RESULT 2 = (OPERAND 1) A (OPERAND 2) . If f(I I/ -I k)

is present, then as illustrated in Example 3.2, (RESULT 1) * (RESULT 2)

would be read out, where * denotes the bit-wise logical AND or OR function

depending on technology. In this situation, if * is the OR function, I.

would read out (RESULT 1) V (RESULT 2) = (OPERAND 1) / ((OPERAND i) A

(OPERAND 2)) = OPERANDI = RESULT 1, as expected. hus, the fault

f(I/I +I) is an undetectable fault.

Theorem 4.10: Procedure 4.11 detects all detectable

f(I/I+I k) faults in case C(I.I).

Proof: If the proper operands as required by the condition in
step 1 are really stored in S(Ik), and f(I./I +Ik) causes the actual

k k

result read out under instruction I. to be the bit-wise logical OR

combination of RESULT 1 and RESULT2, the fault will be detected in step 2

as (RESULT 1)V (RESULT 2) # RESULT 1 will be read out. On the other hand,

under faults involved in the instructions used to store data in S(Ik),

wrong operands may have been stored in S(Ik) in step 1. In this situation

the fault will be detected not in step 2 but in step 3 when Ik is executed.

(Recall the fault model in Section 3.2; if f(I./I.+Ik) exists, Ik is

correctly executed.) Steps 4, 5, and 6 detect the fault if f(/I +1 k)

causes the actual result read out under instruction I. to be the bit-wise

Jlogical AND combination of RESULT 1 and RESULT 2. -

115

Case C(1.2): During the execution of instructions Ij and Ik

fthe results of the operations performed are stored in registers. (The

results are not read out as in case C(l.l).) This case is identical to

case B(1.2.2), and all the points illustrated in Example 4.7 do apply

here too. Depending on whether the results of I. and Ik are stored in

the same or different registers we divide this case into two subcases,

namely, case C(1.2.1) and case C(1.2.2), exactly in the same way

case B(I.2.1) was divided into case B(l.2.1.1) and case B(1.2.1.2).

Case C(1.2.1): The results produced by executing instructions

Ij and Ik are stored in the same register. Let this register be

designated as R p; furthermore let READ (R) = (. Note that 2(1) 1.

(Refer to Example 4.8.) In this case we follow Procedure 4.7 given for

case B(1.2.2.1), except for two modifications:

1. In step I of Procedure 4.7, RESULT 1 and RESULT2 should

satisfy the condition (RESULT 1) V (RESULT 2) $ RESULT I.

2. Step I through step 5 of Procedure 4.7 are repeated, and RESULT 1

and RESULT 2 should satisfy the condition (RESULT I) A (RESULT 2) 0 RESULT 1.

It can be easily proved that the procedure detects f(I /l +I)

in this case by following the similar arguments used in the proofs of

Theorems 4.6 and 4.10.

Case C(l.2.2): The results produced by executing instructions

I and I are stored in different registers. Let the result produced by

Ik be stored in register R . Furthermore, let READ (R p) I p. Note

that 2(1) 1.!p

I
I

116

Procedure 4.12:

This procedure is applicable for case C(l.2.2). It

generates tests to detect fault f(II/I + k) when ,(I) = k(I) 1, and

during the execution of Ij and Ik the results of the operations are stored

in different registers.

Step 1: Store OPERAND 1 in register R and proper operands in S(Ik) such that
pSk

when I is executed RESULT 1 is stored in R. and RESULT 1 # OPERAND I.
k p

Step 2: Read out register R by executing READ (R. (I
p p p

/Expected output data = OPERAND l/

Step 3: Repeat step 2.

Step 4: Execute I..J

Step 5: Read out register R. by executing READ (R.) i
p p p

/Expected output data = OPERAND I # RESULT I/

Theorem 4.11: Procedure 4.12 detects f(I /I.+ I) in

case C(1.2.2).

The proof of this theorem follows closely that of Theorem 4.6

and will not be repeated here.

4.3.4.2. Test Generation for f(I./ j+k) When (I.--

and A Ik) = 2

This case is referred to as case C(2). We divide this case

into various subcases, namely, case C(2.1) through case C(2.4), depending

on whether D(Ik) g S(I.) and whether during the execution of Ij the result

of the operation performed under I. is read out. Tests generated for

case C(2.1) and case C(2.2) are to be applied before those for case C(2.3)

and case C(2.4).

-- i .
T
..

117

Case C(2.1): D(Ik) S(I.), and the result of the operation

performed under I. is read out during its execution. An example of this3

case is given below.

Example 4.11: Instruction I. is "Push the contents of the3

accumulator on the top of a LIFO stack maintained in the main memory,"

and instruction Ik is "Transfer the contents of register R1 to the

accumulator." In general, I. may perform some operation on its operands

jand then read out the result.

Procedure 4.13:

* This procedure is applicable for case C(2.1). It generates

tests to detect f(I/I.+I k) when 1(1) = 1, (= 2, D(Ik) S(I and

the result of the operation performed under I. is read out during its

execution.

Step I: Store proper operands in S(I.) such that when I. is executed

RESULT I is read out. Store proper operands in S(Ik) such that

when Ik is executed, it changes the contents of D(Ik) so that if

I. is executed after Ik) RESULT 2 # RESULT 1 will be read out.

Step 2: Execute I. /Expected output data = RESULT I/

Step 3: Repeat step 2. /Expected output data = RESULT I # RESULT2/

Step 4: Execute Ik *

Step 5: Execute I.- /Expected output data = RESULT 2 /

Theorem 4.12: Procedure 4.13 detects f(I /1 +1 k) in case C(2.1).

Proof: If the proper operands as required in step 1 are really

stored in S(I k) the fault will be detected in step 3, because RESULT 2 will

be read out instead of RESULT 1. If proper operands are not stored in

S(Ik) due to the faults in instructions used to write data in S(Ik) , the

I

118

fault may not be detected in step 3, but it will be detected in step 5

because the output data will then be different from RESULT 2.

Case C(2.2): D(Ik) S(I.) and the result of the operation

performed under I. is read out during its execution.J

Procedure 4.14:

This procedure is applicable for case C(2.2). It generates
tests to'detect fault f(Ij/lj+I k) when %(I.) = i,2, D(I S(I

3 j k jk =2D(k)

and the result of the operation performed under I. is read out during its

execution.

Step 1: Store proper operands in S(Ik) and OPERAND 1 in D(Ik) such that

when Ik is executed it produces RESULT I # OPERAND I in D(Ik).

Step 2: Execute I..

Step 3: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = OPERAND I/

Step 4: If 2 (S(Ik)) ; 2 then repeat steps 2 and 3 else go to step 5.

Step 5: Execute Ik*

Step 6: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = RESULT 1 # OPERAND 1 /

Theorem 4.13: Procedure 4.14 detects f(Ij/I+k) in case C(2.2).

Proof: If the proper operands as required in step 1 are really

stored in S(Ik) the fault f(I /I .+I k) will be detected in step 3 because

RESULT I # OPERAND I will be read out. On the other hand, if proper

operands are not stored in S(Ik) because of faults in the instructions

used to store data in S(Ik), OPERAND 1 may be produced in D(Ik) when Ik is

executed. In this situation step 3 will not detect the fault f(I /1 +1k).

The necessity for step 4 is now explained.

119I
At this stage the microprocessor under test has not executed

5 the tests to detect f(Ip/I +1) where I(Ip) = l and 2(Iq) Z 3. If

f(I p/Ip + q) is present and D(I q) = S(I k) (requiring I(S(Ik)) z 2), then

the execution of READ (D(Ik)) in step 3 may cause a change in the

j contents of S(Ik) due to the additional execution of I q. This will be

detected in step 4 as the output data will be different from OPERAND 1.

J On the other hand, if the contents of S(Ik) remain unchanged after step 3

they will remain unchanged after step 4 also. In this situation the

fault will be detected in step 6 as the output data will be different

from RESULT I.

Case C(2.3): The results produced during the execution of

Ij and Ik are stored in the same register. (The result of the operation

performed under I. is not read out, as in case C(2.1) or case C(2.2).)J

Let this register be designated as R ; furthermore let READ (R) (I
p p p

Note that 2(Ip) 1. (This is consistent with our discussion in
p

Example 4.7.)

Procedure 4.15:

This procedure is applicable for case C(2.3). It generates

tests to detect fault f(lj/Ii+Ik) when (I , (Ik) = 2, and the results

produced during the execution of I. and Ik are stored in the same register

designated as R •Ip
Step 1: If possible, store proper operands in S(I) and S(Ik) so that

I when I. is executed RESULT 1 is produced in R and when Ik is

executed RESULT 2 is produced in Rp, and (RESULT 1) v (RESULT 2)

I # (RESULT 1).

Step 2: Execute I.

I
Il

120

Step 3: Read out R by executing READ (R p) (I).Se :RaouRp p p

/Expected output data = RESULT 1/

Step 4: If L(S(Ik)) 2 then repeat steps 2 and 3 else go to step 5.

Step 5: Execute Ik *

Step 6: Read out R by executing READ (R) = (I .Stp6 ea u p p P

/Expected output data- RESULT 2 /

Step 7: Repeat step I with the change that (RESULT 1) A (RESULT 2)

(RESULT I).

Step 8: Repeat steps 2 through 6.

Theorem 4.14: Procedure 4.15 detects f(I./I +I) in

case C(2.3). 77

The proof of this theorem follows closely those of Theorems

4.10 and 4.13, and hence is not given.

Case C(2.4): The results produced during the execution of

I. and Ik are stored in different registers.

Procedures 4.16:

This procedure is applicable for case C(2.4). It

generates tests to detect fault f(Ij/I j+ 1 k) when l() = I, A(Ik) = 2,

and the results produced during the execution of Ij and Ik are stored in

different registers.

Step 1: If possible, store proper operands in S(I k) and OPERAND I in D(Ik)

so that when Ik is executed RESULT 1 is produced in D(I) and

RESULT 1 # OPERAND 1.

Step 2: Execute I..j

121I
Step 3: Read out D(Ik) by executing READ (D(Ik)).

V /Expected output data = OPERAND i /

Step 4: If 2 (S(Ik)) a 2 then repeat steps 2 and 3 else go to step 5.

Step 5: Execute I
k'

f Step 6: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = RESULT I/ E

Theorem 4.15: Procedure 4.16 detects f(I /Ij+Ik) in

g! case C(2.4).

The proof of this theorem follows the arguments given in the

* proof of Theorem 4.13, and hence is not given.

4.3.4.3. Test Generation for f(jI / lj k) When I(Ij) = A(Ik 2

This case is referred to as case C(3) and is divided into two

subcases, namely, case C(3.1) and case C(3.2) depending on whether or

not D(Ij) = D(Ik

Case C(3.1): D(I.) D(Ik). The basic requirement of test

generation in this case is to store proper operands in S(Ij) and S(Ik) such

that if I. is executed it produces an x E fO,lj in some bit (say the pth bit)

of D(I.), and if Ik is executed it produces x in the same bit of D(I.).

th
When I is executed x * x will be produced in the p bit of D() if

f(I j/ +Ik) is present. (* denotes the logic AND or OR function.) NoteI
that x * x # x, for x = I and * - AND, and for x = 0 and * OR. Thus,

if D(I) is read out after executing I the fault will be detected.

If D(I.) S S(Ij) and D(I) S(I), no specific data need to be

stored in D(I) in order to satisfy this requirement. On the other hand

th
if D(I.) S(I.) or D(I. S(I), in order to produce an x in the p

!k

122

_ thbit of D(I.) when I. is executed, and to produce x in the p bit D(Ij)
3 3 ..

when Ik is executed, it may be required that some specific logic value
pth th

must be stored in the p bit of D(I.). If x must be stored in the p

bit of D(I.), the situation is referred to as "situation A"; if x must

be stored in the pth bit of D(Ij), the situation is referred to as

"situation B." The following example should clarify these two situations.

Example 4.12: Suppose instruction I. is "Transfer the contents

of register R to register R2," and instruction Ik is "Perform the

logical AND operation on the contents of register R2 and R3, and store

the result in R2." Instructions I. and Ik are represented in a graph in

thFigure 4.5. We must store x = 0 in the p bit of RI, and x I in the
th
p bit of both R and R3, so that if I. is executed x

= 0 is produced
2 33

th th
in the p bit of R2, and if Ik is executed x = 1 is produced in the p

bit of R2. Thus, this is an example of what we have referred to as

situation B. An example of situation A can be easily obtained by simply

renaming instruction I as Ik) and vice-versa, and letting x = 1.

We now present two subprocedures to be used in these two

different situations. Followed by this we will present Procedure 4.17

(which is a test generation procedure for case C(3.1)) which calls

Subprocedure A (as a subroutine) when situation A is present and calls

Subprocedure B when situation B is present.

Subprocedure A:

This procedure is called as a subroutine by Procedure 4.17

when situation A is present.

123

IR

R2

FR- 6469

Figure 4.5. Illustrating Example 4.12.

124

Step 1: Execute I..

Step 2: Read out D(I.) by executing READ (D(I.)).

/The pth bit of the output data = x/

Step 3: If L(S(Ik)) ? 2 then repeat steps i and 2 else go to step 4.

Step 4: Execute Ik '

Step 5: Read out D(I.) by executing READ (D(I.)).

th
/The p bit of the output data x

Subprocedure B:

This procedure is called as a subroutine by Procedure 4.17

when situation B is present.

Step I: Execute I

Step 2: Read out D(Ik) by executing READ (D(Ik)).

th
/The p bit of the output data = x/

Step 3: If A(S(Ik)) 2 then repeat steps I and 2 else go to step 4.

Step 4: Execute I.

Step 5: Read out D(I.) by executing READ (D(I.)).

th
/The p bit of the output data = x/ 7

Procedure 4.17:

This procedure is applicable for case C(3.1) and

case B(2.2). It generates tests to detect fault f(t./I.j+1k when Z()

= L(Ik) = 2 and D(I2 D(Ik), and fault f(I /Ik) when (Ij) (I k) 2 and

D(Ij). = D(Ik).

FOR i- I TO 2 DO

BEGIN

I!
125

Step 1: IF i I THEN x - 0 ELSE x <- I.

Step 2: If possible, store proper operands in S(I.) and S(I k)

such that if I. is executed it produces x in some bit

(say the pth bit) of D(I.), and if Ik is executed it

- th
produces x in the p bit of D(I).

Step 3: If step 2 requires x to be stored in the pth bit of D(Ij)

then execute Subprocedure A else execute Subprocedure B.

END.

Note that if D(Ij) S(Ij) and D(I,) S(Ik), then as mentioned

earlier no specific data need to be stored in D(I.) in step 2 of

Procedure 4.17. Therefore strictly speaking either of the subprocedures

could be called in step 3 when D(I) ; S(I) and D(I.) ; S(Ik).

Theorem 4.16: Procedure 4.17 detects f(lj/I +Ik) in case C(3.1)

as well as f(Ij/Ik) in case B(2.2).

Proof: In step 2, proper operands are chosen in S(I.) and

SUk) to produce x in some bit (say the Ot h bit) of D(I.) if I is

executed, and to produce x in the same bit of D(I if I k is executed.
th

If f(I /1 + k) is present, x * x will be produced in the p bit of D(I),

when I. is executed. If f(l /I k) is present x will be produced in the

th
p bit of D(I). The first iteration of the FOR loop is for detecting the

fault if * denotes the OR function, and the second iteration of the loop

is for detecting the fault if * denotes the AND function.

Without loss of generality we assume that * denotes the OR

function and situation A exists. Therefore in step 3, Subprocedure A is

j executed as a subroutine. If proper operands are really stored in S(I

in step 2 of Procedure 4.17, the fault will be detected in step 2 of

L

126

Subprocedure A when D(I.) is read out. On the other hand, proper operands

may not be stored in S(Ik) due to faults involved in instructions used to

write data in S(Ik). In this case the fault will not be detected in step 2

of Subprocedure A. The microprocessor under test has not yet executed

tests to detect f(I p/Ip + q) where .(I P) = 1 and I(q) 3. Therefore the

execution of READ (D(I.)) in step 2 of the subprocedure may cause

additional execution of an instruction Iq such that I(l) 3 and D(I q)

C S(Ik). If this changes the contents of S(Ik) the fault may be deteceid

in step 3 of the subprocedure, otherwise it will be detected in step 5.

(Refer to the details of the proof of Theorem 4.13.)

Case C(3.2): D(I) #D(Ik In this case we follow the

procedure below.

Procedure 4.18:

This procedure is applicable for case C(3.2). It

generates tests to detect fault f(Ij/Ij+Ik) when I(l.) = () = 2 and

D(I.) D(Ik)

Step 1: Store proper operands in S(Ik) and OPERAND I in D(Ik) such

that when Ik is executed it produces RESULT 1 in D(Ik),

and RESULT 1 # OPERAND I. If 2 (S(Ik)) 1, read out S(Ik) by

executing READ (S(Ik)).

/To make sure that S(Ik) contains expected operands/

Step 2: Execute I..3

Step 3: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = OPERAND 1 # RES TULT I/

Step 4: If -(S(Ik)) > 2 then repeat steps 2 and 3 else go to step 5.

Lk

I !

127I
Step 5: Execute Ik .

Step 6: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = RESULT I/

Theorem 4.17: Procedure 4.18 detects f(lj/1j+Ik) in

case C(3.2).

Proof: We will give only the sketch of the proof since the

basic ideas are essentially the same as used in the proofs of Theorem 4.10

through 4.17. If prope:. operands are really stored in S(I k) in step 1

the fault will be detected in step 3, since RESULT 1 will be read out.

On the other hand, if proper operands are not stored in S(I k) due to

kkfaults in instructions used to write data in S(kthe fault will be

detected either in step I (if Y(S(2 k))- 1) when S(Ik) is read out, or

in step 4 or 6.

4.3.4.4. Test Generation for fLI/I j+1 k When Z(1.) = k) = K a 3

This case is referred to as case C(4). Note that according

to the assumption in Section 4.3.1, instructions 1j and Ik belong to class T.

When the microprocessor executes the tests to detect faults f(I/I +Ik),

where I(l) = Z(= K 3, it has already executed the tests to detect

faults f(I /1 +1) where I ' -(Ip) < K-1 and),(1) < 2; in particular it has
p pq p q

been already checked that the execution of any instruction of label ! K-1

will not give rise to the additional execution of any instruction of class M.

(Recall our assumption in Section 4.3.1 that if I. belongs to class M,J

2 (l) < 2.) We divide this case into two subcases depending on wnether

or not D(I> = D(Ik>.

66-

128

Case C(4.1): D(I) =D(Ik). Since 1(= K,

(D(I)= K-I. This case is illustrated in Figure 4.4, where depending

on L(S(Ik)) this case can be further divided into two subcases.

Case C(41.1) refers to (S(Ik)) < K, and case C(4.1.2) refers to I(S(Ik)) = K.

Note that Z(S(Ik)) K, since ;(Ik) = K and I k E class T. (Refer to the

labeling algorithm given in Section 4.1.)

Case C(4.1.1): Z(S(Ik)) < K. In this case we follow the

procedure below.

Procedure 4.19:

This procedure is applicable for case C(4.1.1). It generates

tests to detect fault f(i./I.+ k) when 1(11)(1 k K > 3, D(I) D(Ik)

and I(S(Ik)) < K. This procedure is essentially the same as Procedure 4.9

executed twice, with the following modifications: During the first

execution of the procedure, in step 1 the condition to be satisfied by

OPERAND 1 and OPERAND 2 is given by (OPERAND 1) V (OPERAND 2) # OPERAND 1,

and during the second execution of the procedure the condition to be

satisfied is given by (OPERAND 1) A (OPERAND 2) # OPERAND I.

Theorem 4.18: Procedure 4.19 detects f(I./Ij+I k) in case C

(4.1.1).

Proof: The proof of this theorem parallels closely that of

Theorem 4.8. We will, therefore, stress only those points where they differ.

In step 2 of Procedure 4.19, I. is executed and it is expected to produceJ

OPERAND I in D(I.). If f(I ./1 +1) exists, (OPERAND I) * (OPERAND 2) would
jik

be produced instead, where as before * denotes the logical AND or OR

function, provided S(Ik) really contained OPERAND2 when Ij is executed.

In this case the fault will be detected in step 4. On the other hand,

I
129

due to the faults involved in the instructions used to write data in S(Ik) ,

f OPERAND2 may not be stored in S(Ik); in this case the fault will be

detected in step 3 itself.

Case C(4.1.2): 2 (S(Ik)) K. In this case we follow Procedure

(4.10 twice, with the same modifications given for case C(41.1). We refer to

this modified Procedure 4.10 as Procedure 4.20.

Theorem 4.19: Procedure 4.20 detects f(I./Ilj+I k) in

case C(4.1.2).

The proof of this theorem follows closely those of Theorem 4.9

and 4.18, and hence is not repeated here.

Case C(4.2): D(Ij) # D(Ik). Depending on Z(S(Ik)) this case

can be further divided into two subcases. Case C(4.2.1) refers to

2(S(Ik)) < K, and case C(4.2.2) refers to I(S(I)) = K. Note that
k

I(S(Ik)) K, since I(Ik= K and Ik belongs to class T.

Case C(4.2.1): I(S(Ik)) < K. In this case we use the procedure
k

below.

Procedure 4.21:

This procedure is applicable for case C(4.2.1). It

generates tests to detect fault f(I./1 +1k) when I(lj) = (I k) = K > 3,
~i jk j k

D(I) #D(Ik), and I(S(Ik)) < K.

Step 1: Store OPERAND 1 in S(I k) and OPERAND2 in D(Ik), such that

OPERAND 1 # OPERAND 2.

I Step 2: Read out S(Ik) by executing READ (S(Ik)).

/Expected output data = OPERAND 1/

I
I

130

Step 3: Execute I..

Step : Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = OPERAND 2 /

Theorem 4.20: Procedure 4.21 detects f(I./1 +l) in

case C(4.2.1).

Proof: Since I(S(Ik)) < K, no instruction in the READ (S(Ik))

sequence can have label greater than K-I. Also)(D(Ik)) K-1, hence

READ (S(Ik)) reads out S(Ik) without routing its contents through D(Ik).

When the microprocessor under test executes this procedure, it has

already executed the tests to detect f(Ip /0), f(Ip /), and f(I p/Ip + q)

where 1 < 2(1p), :(-) p K-i, and f(Iv/Iv+Iw) where 1 I(Iv) : K-I and

z(Iw) = K. Therefore, in step 2 of this procedure, S(Ik) is correctly

read out to make sure that it stores OPERAND 1, and it continues to store

OPERAND 1 after READ (S(Ik)) is executed. In step 3, 1j is executed. If

f(Ij/Ij+Ik) is present, OPERAND I will be stored in D(Ik) and the fault

will be detected in step 4.

Case C(4.2.2): i(S(Ik)) = K. In this case we follow the

procedure below.

Procedure 4.22:

This procedure is applicable for case C(4.2.2). It

generates tests to detect fault f(I/1. +1) when 2(1.) (I) K > 3,

D(I.) # D(T), and I (S(Ik)) = K.

Step 1: Store OPERAND 1 in S(I) and OPERAND2 in D(Ik), such that

OPERAND 1 #OPERAND 2.

I
1 131

Step 2: FOR i - 1 TO K DO

I BEGIN

IExecute I

Read out D(Ik) by executing READ (S(Ik

I/Expected output data = OPERAND 2/

END

I Step 3: Execute I.
k'

Step 4: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = OPERAND1 /

Theorem 4.21: Procedure 4.22 detects f(I./I.+I in

case C(4.2.2). '

The proof of this theorem follows very closely that of Theorem

4.9 and is not repeated here.

4.3.4.5. Test Generation for f(I/I k) When 1 (l.) K,

2(1k) = K+1, and K z 2.

This case is referred to as case C(5). Note that Ik belongs

to class T because)(Ik) = K+1 and K Z 2. Since Z(Ij) K and I(Ik) K+1,

A(D(Ij)) K-1 and Z(D(Ik)) = K; hence D(I.) # D(Ik). We divide this case

into two subcases depending on whether the value of)(S(Ik)) is less than

K or is equal to K or K+1. Note that it cannot be greater than K+1

because I(Ik) = K+1 and Ik belongs to class T.

Case C(5.1): Z(S(Ik)) * K-I. We follow Procedure 4.21 in

Ithis case. Following the arguments similar to those given in the proof

of Theorem 4.20, it can be proved that Procedure 4.21 also detects

f(t /I +Ik) in case C(5.1).I

132

Case C(5.2): I(S(Ik)) K or K+1. We follow Procedure 4.22

in this case. Following the arguments similar to those in the proof of

Theorem 4.9, it can be proved that Procedure 4.22 also detects f(I jlj+ k)

in case C(5.2).

4.3.4.6. Test Generation for f(I/l.+I When K+1 1(<)_lj Kax

and I(I K.

This case is referred to as case C(6) and is divided into three

subcases depending on the value of K.

Case C(6.1): 2 < I(I.) < Km, and Z(I = 1. In this case the

fault f(I/I +I k) will be readily detected due to the highest observability

of Ik . For example, during the execution of Ik, data is transmitted

between the microprocessor and the main memory or an I/0 device, or the

logic values on certain status pins are changed (e.g., during the

execution of the "Interrupt enable" instruction). Such is not the case

during the execution of I, therefore f(I/I+Ik) will be readily detected

when I. is executed.

Case C(6.2): 3 ! Z(I) K Kmax and =(Ik 2. The following

procedure is followed in this case.

Procedure 4.23:

This procedure is applicable for case C(6.2). It generates

tests to detect fault f(i /I+I k) when 3 < 1(lj) S Kmax, and I(Ik) 2.

Step 1: Store proper operands in S(Ik) and OPERAND 1 in D(Ik) such

that when Ik is executed RESULT 1 is produced in D(Ik), and

OPERAND 1 $ RESULT 1. If D(Ij) a S(Ik) then store a proper

operand in S(I.) such that when 1, is executed the contents of

D(I.) will not change. /To ensure that after executing Ij,

133

the contents of S(Ik) remain unchanged/

Step 2: Execute I .

Step 3: Read out D(Ik) by executing READ (D(Ik)).

I /Expected output data = OPERAND l/

i Step 4: If Z(S(Ik)) 3 then repeat steps 2 and 3 else go to step 5.

Step 5: Execute I

J Step 6: Read out D(Ik) by executing READ (D(Ik)).

/Expected output data = RESULT I/ E

Theorem 4.22: Procedure 4.23 detects f(./T.+I k) in

case C(6.2).

The proof of this theorem is not given as it follows the same

arguments given in the proofs of Theorems 4.10 through 4.17.

Case C(6.3): K+l < (j) Kma x , Z (I) = K Z 3. Therefore

according to the assumption in Section 4.3.1, instructions I. and Ik

belong to class T. In this case the procedure given below is followed.

Procedure 4.24:

This procedure is applicable for case C(6.3). It generates

tests to detect fault f(I./I +Ik) when K+ < : kT) < K Z(1k) K,
j k k max' k

and K ; 3.

Step 1: Store OPERAND I in S(Ik) and OPERAND 2 in D(Ik) such that

OPERAND 1 0 OPERAND 2. If D(I.) =) then store OPERAND 1

in S(I.). /To ensure that after executing I, the contents

J of S(Ik) remain unchanged/

Step 2: Execute I..

I
I

134

Step 3: Read out D(I k) by executing READ (D(I k)).

/Expected output data = OPERAND 2. S(Ik) would continue to

store its data after executing READ (D(Ik)), since

kk2(S(tk)) < K!

Step 4: Execute Ik .

Step 5: Read out D(Ik) by executing READ (D(Ik))

/Expected output data = OPERAND 1/

Theorem 4.23: Procedure 4.24 detects f(I /Ij+I k) in

case C(6.3).

The proof of this theorem is not given as it follows the same

arguments used in the proofs of Theorems 4.10 through 4.17.

4.4. Test Generation Procedures for Detecting Faults in the Data Transfer

Function and the Data Storage Function

We motivate the discussion by means of an example. Let

Il , 1 2, ... , I. be a sequence of instructions of class T such that

E(Ij), E(I.2), ..., E(Ik) form a directed path from the IN node to the

OUT node in the corresponding S-graph. Let the transfer paths in sets

T(IjI), T(Ij2), ..., T(l k) each be w lines in width. Figure 4.6

illustrates the notation. We propose Procedure 4.25 to detect any fault in

T(Ij), T(I j2), "'' T(lk), and in registers D(Ij), D(I j2), "'' D(.k-l) .

The fault models for the data storage function and data transfer function

are given in Section 3.3 and 3.4, respectively.

Procedure 4.25:

I with data 111 ... ; /Write D(I.) with data il.. .I/

w width w width

135

I'
I

I (Th' I

1 k

I Out:

0 - 6470

Figure 4.6. Illustrating the notation used in Procedure 4.25.

I
I

I { ,

136

. I ; ... ; /Expected output data 111... l/
j2 j3

w width

I: with data 11.. .i 00.. .0 /Write D(I.) with data 11.. .1 00.. .0/
J 1 4-* 4- 1 4-* 4-0

w/2 w/2 w/2 w/2

I.2; I.3 ;..; I. /Expected output data 11.. .1 00.. .0/

j2;Ij; .. jk 4w/2 w/2

I. with data ii.. .1 00.. .0 1i.. .1 00.. .0

1w/4 w/4 w/4 w/4

/Write D(I.)with data 11...1 00..0 11...1 00...0/

1w/4 w/4 w/4 w/4

I.2; I.3; ...; I.k; /Expected output data = -11. .. 1 00...0 11.. .1 00.. .0/
j2 j3; . j 4 3 4-0 4- 4 ----

w/4 w/4 w/4 w/4

*j1 with data 1010...10; /Write D(I.) with data 1010...10/

ww

I.2; I.3; ...; I.k; /Expected output data 1010.. .10/
j2 j3 i

w

Repeat the instructions above with complementary data.

Theorem 4.24: Procedure 4.25 detects

1) a line in any transfer path in the set T(I.) U T(I) U ... UT(I.)
I 2k

stuck at 0 or 1.

2) two or more iines in any transfer path in the set

T(I.) U T(I.) U U T(l) coupled.
)i j2 D(j)

ik (~k

3) a cell of any register in the set D(I jl U D. .. J D(I)

stuck at 0 or I.

137

Proof: If a fault is described by 1 or 3 above, it will be

detected either after the execution of sequence I. ,j 1. ... , I. when

the expected output data = 111.. .1, or after the execution of the sequence

I when the expected output data = 000.. .0.

Procedure 4.25 also detects any fault described by 2, because

at some stage of the procedure any given two lines of a transfer path

are required to carry different logic values i.e., x and x, x (f0,,11

respectively. If these two lines are coupled they will fail to carry

Idifferent logic values, and the fault will be detected after the subsequent

execution of the sequence 1j22 Ij, ... ' k. EJ

We define the set of tests in Procedure 4.25 "transfer test set"

and the associated data being routed on the corresponding transfer paths

"transfer test data". Consider the transfer paths associated with the

instructions of class T. Concentrate on the subgraph of the S-graph

that represents instructions of class T only. We call this subgraph the

T-subgraph. Let P1 be a directed path from the IN node to the OUT node

in the T-subgraph. All the instructions which are represented by edges

constituting path P1 are said to be covered by path P1. Let P1, P2) -' Pn)

be a set of directed paths from the IN node to the OUT node of the T-subgraph

j such that this set collectively covers all the instructions of class T.

It is clear from Theorem 4.24 that if the transfer test data is routed from

jthe IN node to the OUT node using the transfer test sets consisting of
instructions covered by each path in set fPI' P2' .. .P n any fault in the

transfer paths associated with the instructions of class T, or any fault

I in the data storage function will be detected (since the transfer test

data is "routed" on every edge of the T-subgraph, every node of the graphI
I

8|

138

is also visited).

We need to test the transfer paths associated with the instruc-

tions of class M. Let "Rio R. R R" denote a typical instruction of class M

which performs an operation denoted by "o" on the contents of register R.

and R., and stores the result in register Rk. We need to choose a set of

proper operands in R. and R. such that when the instruction "R.o R. -R"
3. J 2. J k

is executed it generates and stores data corresponding to the transfer

test set in Rk. We then need to route these data from R.k to the OUT node

by executing READ (Rk). This test ensures that the transfer path from

the data manipulation logic (e.g. the ALU used in executing instruction

"R.o R. - Rk") to register R. is fault free. Therefore any result generatedi j k

by this instruction can be faithfully transferred to Rk. Consider instruc-

tion 14 in the S-graph of Figure 2.8. We execute Procedure 4.26 to test

the transfer path from the ALU to R I. (It is assumed that the microprocessor

is an 8-bit processor.)

Procedure 4.26:

11 with data 1111 1111

12 with data 0000 0000

14

17

Repeat the tests above with data (1111 0000, 0000 0000),

(1100 1100, 0000 0000), (1010 1010, 0000 0000), (0000 0000 0000 0000),

(0000 1111, 0000 0000), (0011 0011, 0000 0000), (0101 0101, 0000 0000). L

We also need to check that the transfer paths connecting R.
1.

and R. to the ALU in the "R.o R. - Rk" instruction are fault free. Thisj i J

6.L

139I
ensures that any pair of operands can be applied to the ALU in the

"Rio R. - R, instruction. For this we need to check that any line in the

transfer paths from R. and R. to the ALU can be set to 0 or 1 independent

of the logic values on any other line in these transfer paths. Consider

instruction 14 in Figure 2.8. We wart to test the transfer paths

connecting R1 and R2 to the ALU. We execute Procedure 4.27.

Procedure 4.27:

II with data 0000 0001 /R stores 0000 0001/

12 with data 0000 0000 ; /R2 stores 0000 0000/

:14

17 /Expected output data 0000 0001/

I I with data 0000 0010 /R stores 0000 0010/

12 with data 0000 0000 /R2 stores 0000 0000/

14 ;

17 ; /Expected output data 0000 0010/

Il with data 1000 0000 ; /R1 stores 1000 0000/

12 with data 0000 0000 ; /R2 stores 0000 0000/

14 ;

17 ; /Expected output data 1000 0000/

II with data 0000 0000 /RI stores 0000 0000/

12 with data 0000 0001 /R2 stores 0000 0001/

j 14 ;

17 ; /Expected output data 0000 0001/

IA
!

140

1I with data 0000 0000 ; /R stores 0000 0000/

12 with data 0000 0010 ; /R2 stores 0000 0010/

14

17 ; /Expected output data 0000 0010/

1 with data 0000 0000 ; /R stores 0000 0000/

12 with data 1000 0000 ; /R2 stores 1000 0000/

14

17 ; /Expected output data 1000 0000/

Repeat the test above with complementary data. E

We need to execute tests similar to those given in Procedures

4.26 and 4.27 for every instruction of class M. Finally we must test

the transfer paths associated with the instructions of class B. This

is accomplished by choosing the set of jump or branch addresses such

that they correspond to the transfer test set for jump, branch, return

from subroutine, etc., instructions. For example, in order to test the

transfer path associated with the jump instruction (instruction 19)

in Figure 2.8 we need to execute Procedure 4.28. It is assumed that the

width of the address bus is 16.

Procedure 4.28:

19 with jump address 0000 0000 0000 0000 ;

19 with jump address 0000 0000 1111 1111 ;

19 with jump address 0000 1111 0000 1111 ;

I with jump address 0011 0011 0011 0011 ;
9

19 with jump address 0101 0101 0101 0101;

1 141

Repeat the test above with the complementary set of jump addresses.

4.5. Test Generation Procedure for Detecting Faults in the Data

JManipulation Function
As described in Section 3.5 we assume that complete test sets

fare available for detecting faults (for some specified fault model)

in the ALU and other functional units such as a shifter, logic used to

increment the program counter, or the interrupt handling logic. The

operands specified by such test sets can be provided to a functional

unit using, in general, a sequence of instructions of class T.

Similarly, the result produced by a functional unit can be read out using

a sequence of instructions of class T.

If the logic level description of functional units is available,

test sets can be generated for them using classical fault detection

algorithms based on the stuck-at fault model. On the other hand, if we

do not know the logic level details of the ALU, but know, for example,

that it is realized using an iterative logic array we can generate test

sets for it as explained in [Dias76]. Another approach would be to

generate test sets for functional testing of the ALU, shift, increment,

compare logic, etc., using binary decision diagrams [Aker78].

IEven though some faults associated with the instruction

Jdecoding and control function look like faults in the data manipulation

function, and vice versa, the set of faults in one function is not a subset

f or superset of the set of faults in the other function. For example,

under a fault in the instruction decoding function an "Add" instruction

I may be decoded as a "Subtract" instruction. This fault cannot be

distinguished from a fault in the ALU: however, if the test procedure

I

142

for detecting faults in the instruction decoding and control function

(presented in Section 4.3) is executed correctly, it cannot guarantee the

absence of faults in the ALU. In order to detect a fault in the ALU

or any other functional units we need to execute the corresponding test

sets. Similarly if the test procedure for detecting faults in the

data manipulation function is executed correctly, it does not guarantee

the absence of faults in the instruction decoding and control function.

For example, whenever an "Add" instruction is executed, it may

additionally activate an instruction that complements a certain register

not involved in the "Add" instruction. Such a fault can be detected by the

test procedure used to detect faults in the instruction decoding and

control function and not by the test procedure used to detect faults in

the data manipulation function.

lI

143

5. COMPLEXITY OF THE TEST SEQUENCES

We now determine the complexity of the test sequences generated

by various procedures given in Chapter 4. The complexity is measured

in terms of the number of instructions generated as a function of nR- the

f number of registers in set R, or n,- the number of instructions in the

instruction repertoire. This will help in exploring the relationship

between the architecture of a microprocessor and the complexity of the

test sequences.

Theorem 5.1: The worst case complexity of the test sequence

generated by Procedure 4.1 is (n), where IRI = n

Proof: Let us consider the number of instructions that are

generated in steps 3(a), (b), and (c) of Procedure 4.1 when there are K

registers in set A, i.e., JAI = K. As a result of the labeling algorithm,

max(Z(Ri)) = K' ! K for every register R. of set A. Also, every number in the

integer set f1,2, ... , K') is assigned as a label to at least one register

in set A. Therefore, in the worst case, during step 3(b) we need to

generate E(I + 2 + ... + K) instructions which would read out the registers

of set A, where IAI = K. Since set A is augmented only by one register

during each iteration of step 3, in the worst case, E(I + 2 + ... + K)
k=l

instructions need to be performed for reading out registers of set A.
n -1

Similarly, in all iterations of step 3(c), a total of (K + 1) instruc-
K=

tions need to be generated to read out the register at the front of the

queue.

Sinc, there are only nR registers, the register that is

"farthest away" from the IN node can be written by executing at most n.

instructions of class T. Moreover, if this register needs nR instructions

I

144

to be written into, the "next farthest away" register will require (nR-l)

instructions, and so on. Therefore when JAI = K, in the worst case,

nR - (K - 1) + n - (K - 2) + (nR - I) + nR instructions are required to write

the registers of a set A during step 3(a). During all iterations of

step 3(a), a total of R I n -(K +
K=I R

instructions are needed to write the registers of set A. Similarly in
n 1

all iterations of step 3(a), a total of =I (n - K) instructions are

needed to write the register at the front of the queue, in the worst case.

When all the terms involved in series are suxmned up, a total of

3 ' 2 _
nR + 2nR - nR - 2 instructions are generated. Hence the worst case

complexity of the test sequence is ,1(nR).

It is instructive to illustrate the worst case example which

is shown by a partial S-graph in Figure 5.1. Note that 3(n) complexity

is only for the worst case. For nR
= 7, 432 instructions are generated

in the worst case. However, for the example microprocessor (where nR 7)

only 2 x 53 = 106 instructions are generated as shown in Example 4.2.

The exact number of instructions depends on the distribution of integer

labels of the nodes. In fact, if all nodes have label 1 (i.e., if the

architecture contains only the so-called accumulators and general purpose

registers which can be directly loaded into and stored from the main

2
memory), the complexity of the test sequence would be a(n2). On the

other hand, if the architecture allows scratch-pad registers and on-chip

LIFO stacks, for example, (giving rise to nodes with labels greater

than I in the S-graph), the complexity of the test sequence approaches 3(n).

It is very difficult to find a closed form solution for the

worst case complexity of the test sequence generated by procedures in

145

II

In
In-
In

nR1

3
Figure 5.1. The worst-case example requiring ~n R) instructionsI to be generated by Procedure 4.1.

146

Section 4.3. We will therefore concentrate on the dominating term in the

worst case complexity calculation. This dominating term can be attributed to

the loop in .'tep 2 of Procedures 4.10, 4.20 and 4.22. Let ni be the number

of instructions whose edge sets have been labeled i in the S-graph. As

denoted earlier, let Kmax be the maximum value of labels associated with the

edge sets. Thus ni = r-. The dominating term accounts for K . n (i)
i~l iil

instructions generated by step 2 of Procedures 4.10, 4.20 and 4.22.

If the architecture allows instructions which are represented

by edge sets with labels much greater than 1, the length of the test

sequence could become very large in the worst case, since the complexity

grows exponentially (note the ii factor in the expression above). This is

because instructions represented by edge sets with large labels impart

very poor observability to the architecture, i.e., a large number of

instructions need to be executed to read out internal registers; this is

reflected in the increased length of the test sequences generated by

procedures in Section 4.3. However, the expression above is applicable

-only in the worst case; in many typical architectures Kax : 3, deemphasizing

the effect of the dominating term. In fact, if Kma x ! 2 (i.e., the instruction

repertoire contains instructions that store their result in the main memory

or the accumulators and general-purpose registers), Procedures 4.10, 4.20

and 4.22 will not be required at all. In the case of such architectures,

the complexity of the test sequences generated by the procedures given in

Section 4.3 can be approximated to " (n2) because there are r(n2) faults
IfI

(in the instruction decoding and control function) and none of them will

require Procedure 4.10, 4.20 or 4.22 to generate tests for it. Note that no

other procedure has a loop similar to that in step 2 of Procedures 4.10, 4.20

147

and 4.22. Therefore the complexity of test sequences generated by these

I procedures can be approximated to 3(n 2

The length of the test sequence generated by various procedures

given in Section 4.4 depends on the widths of data and address buses,

the nature of operation "o" performed by instructions "R.o R. - Rk" ofI k"

class M, and the distribution of integer labels associated with edge

Isets, i.e., n,. and Kmax . If there are many instructions with higher
1

labels (i.e., large ni for larger i), the length of the test sequences

required to detect a fault in the data transfer and data storage functions

Jincreases.
For today's microprocessors nR typically ranges from 4 to 32,

tI while n, ranges from 30 to 200. Note that the complexity of the test

sequences for detecting faults in the instruction decoding and control

function is at least "4(n2), while the complexity of the test sequences

for detecting faults in the register decoding function is between

3(n 2) and 3(n3). Therefore the test sequences used to detect faults in

the instruction decoding and control function constitute a dominant portion

of the test sequences for a microprocessor.

I
I

IJ
I
I
I

148

6. A CASE STUDY

Test sequences were generated for a real microprocessor by applying

the test generation procedures developed in the thesis. The goal of the study

was two-fold. First, we wanted to generate the test sequences to gain insight

into problems involved in using the test generation procedures. We believe that

this is an essential first step towards automating the test generation procedures

which will operate on a given S-graph. Secondly, we wanted to evaluate the fault

coverage of the test sequences for stuck-at faults for a real microprocessor.

A microprocessor from the Hewlett-Packard Company was used. The

HP microprocessor is a single chip, n-channel MOS, 8 bit parallel, control

oriented processor. All instructions and data are transferred in and out

of the microprocessor with an 8 bit bidirectional data bus. Program

addresses are transferred out on an 11 bit address bus. There can be up to

15 1/0 ports. The normal program may be interrupted by use of the

interrupt request control line. The interrupt scheme is fully vectored

with 256 possible vectors. The processor can control external circuits

and check their status through the use of 7 bidirectional control lines.

The microprocessor contains one 8 bit accumulator, one control

logic unit, one i bit extend register, sixteen 8 bit registers, one 8 bit

magnitude comparator, one II bit program counter, one 11 bit subroutine

stack register, and one 11 bit interrupt stack register. The instruction

set has 187 instructions that includes instructions transferring data

between the memory and the accumulator, between the memory and (sixteen

8 bit) registers, between the accumulator and registers, between the

accumulator and I/0 devices, instructions performing bit manipulations and

magnitude comparisons, instructions performing conditional and unconditional

jumps in the program sequencing, etc.

, II UlU 1 ul~I " A .W..

*1 149

I We adopted the following strategy in applying the test sequences.

Since, as shown in Chapter 5, the test sequences for the instruction

decoding and control function form the dominant portion of the test sequences

Jfor the microprocessor, we first applied the test sequences for the register

decoding function, the data transfer and the data storage function, and

Ithe data manipulation function. The length of these sequences was approx-

jimately I K instructions. This was followed by application of the test

sequences for the instruction decoding and control function. The length

f of these sequences was approximately 8 K instructions. (Recall that there

are 187 instructions in the instruction repertoire.) The test sequences

f were generated by using only the information about the instruction set and

organization of the microprocessor.

In order to determine the fault coverage of the test sequences

for stuck-at faults, a detailed gate and subnetwork model of the micro-

processor (obtained from Hewlett-Packard) was used on the TESTAID III fault

simulator. Approximately 2200 single stuck-at faults were simulated. The

test sequences generated were run in segments (since the simulator could

not handle all the tests at one time) and the fault coverage of each

* segment was noted. The test sequences for the register decoding, data

storage, data transfer, and data manipulation functions were able to detect

Iabout 90% of all single stuck-at faults. About 6% of the faults gave rise

Ito simultaneous execution of multiple instructions as described by the
fault model for the instruction decoding and control function. Many of

these faults were subtle and difficult to detect and very elaborate test

sequences were required (accounting for 8 K instructions). For example,

when executing the instruction "Skip if the nth bit of the accumulator is 0"

1(with n between 0 and 7), under a particular single-at fault, the above

I

150

instruction will be executed correctly, but at the same time, the contents
th

of the accumulator are also stored in the n register. Some examples

of f(lj/Ii+lk) faults found in the case study are given in Table 6.1.

(the table lists instructions Ij and Ik")

The remaining faults (about 4%) were associated with the power-up

and initialization logic, or were undetectable because of redundancies

in the logic, or required invalid opcodes to detect them. Thus for this

particular microprocessor the fault coverage was excellent.

The test generation effort was quite straightforward and we

believe that it can be automated without much difficulty. The overall

results of the case study were quite promising and we are convinced that

our approach is a viable and effective one for generating tests for micro-

processors.

N.!

fV

151

Table 6.1. instructions I. and Ik for which fault f(lj/l +Ik) exists.

Instruction I. Instruction I

Clear the extend bit. Transfer the contents of the accumulator
to register R5 .

Return from interrupt Transfer the contents of the accumulator
and enable interrupt, to register RI.

Clear the third control Disable interrupt.
flag.

Skip if the first Enable interrupt.
control flag is zero.

Clear the first bit of Clear the zeroth bit of the accumulator.
the accumulator.

152

7. CONCLUDING REMARKS

7.1. Summary of Thesis

The purpose of this research has been to develop test generation

procedures for testing microprocessors that would treat the microprocessor

organization and instruction set as parameters. The test generation

effort is assumed to be in a user environment where the gate and flip-flop

level details of the microprocessor are not known. The procedures will

generate tests which can be assembled into valid machine instructions.

The microprocessor under test executes these instructions which are stored

in the memory of an external tester which continually monitors all the

input and output pins of the microprocessor. A fault is detected when the

data on any output pin is different from the expected data.

In Chapter 2, 'he instruction repertoire of the microprocessor

was divided into three classes (T, M, and B). Then a graph-theoretic

model for microprocessor (called the S-graph) was developed. Each register

is represented by a node in the S-graph and data flow involved during the

execution of an instruction is represented by a set of directed edges.

The motivation behind this approach was to be able to construct a model

for the microprocessor for test generation purposes using only the informa-

tion available in the typical user's manual. This is because the gate and

flip-flop level information needed to construct a model at the logic level

is not only unavailable, but classical test generation methods which go

hand in hand with the logic level model will be very complicated and

expensive due to the very large number of gates and flip-flops on the

microprocessor chip.

Functional level fault models describing faulty behavior in the

register decoding function, instruction decoding and control function, data

L-A.

153

transfer function, and data manipulation function were presented in Chapter 3.

Various underlying fault mechanisms responsible for functional level faults

were pointed out. The fault models are quite independent of the details

of implementation. The effects of faults on the behavior of the micro-

processor were described at the level of the S-graph.

In Chapter 4, test generation procedures were given to detect

faults in the fault models. The first step in test generation is to

assign integer labels to the nodes and edges of the S-graph by using the

labeling algorithm given in Section 4.1. The label assigned to a node

indicates the shortest "distance" of that node to the OUT node (in terms

of the instructions of class T or B); the label assigned to the edge set

representing an instruction is directly derived from the label assigned to

its destination register.

Test generation procedures presented in the subsequent sections

of the chapter take full advantage of the information obtained from these

labels; tests are generated in such a way that the knowledge gained from

the correct execution of tests used for checking the decoding of registers

and instructions with lower labels is utilized in generating tests for

checking the decoding of registers and instructions with higher labels.

j In Chapter 5, the complexity of test sequences generated by the

test generation procedures in Chapter 4 was studied. The complexity is

measured in terms of the number of instructions generated as a function of

nR- the number of instructions in the instruction repertoire. The worst

case complexity of the test sequence for the register decoding function

5 was shown to be C(n3); however, if all registers have label i (indicatingRo

the highest observability) the complexity would be
(n 2

IR!

154

It was shown that if the instructions have labels less than or

equal to two, the complexity of test sequences for the instruction decoding

and control function is a(n2). If the architecture allows instructions

with labels greater than two, the complexity increases very rapidly.

Since nR typically ranges from 4 to 32, while nI ranges from 30 to 200,

the test sequences for the instruction decoding and control function

constitute a dominant part of the test sequences of a microprocessor.

In Chapter 6 we have described our effort regarding the develop-

ment of test sequences based on the test generation procedures in Chapter 4

for a real 8-bit microprocessor from the Hewlett-Packard Company.

Approximately 2200 single stuck-at faults were simulated. About 96% of

these faults were detected by these test sequences. The remaining faults

were associated with the power-up and initialization logic, or were

undetectable because of redundancies in the logic or they required invalid

opcodes for their detection. The results of our study were quite promising.

Thus to summarize the thesis, our approach allows us to treat

the organization and instruction set of microprocessors as parameters of

the test generation procedures. The information needed to construct the

S-graph is easily available in the user's manual. We believe our approach

is a viable and effective one towards generating test sequences for micro-

processors.

7.2. Suggested Future Research

The S-graph of the microprocessor is capable of modeling most of

the architectural features observed with current microprocessors. However,

it cannot model some of the features observed in the new, powerful 16-bit

microprocessors. For example, instructions exchanging data among two

155

register files cannot be adequately modeled. In order to under-

stand the effects of these architectural features on test generation,

further research needs to be done to model these architectural features

using the S-graph or some other similar technique.

Fault model for the instruction decoding and control function

considers only "gross" faults f(Ij/0), f(Ij/I k), and f(I /I +1). Our

case study regarding the test generation for the Hewlett-Packard micro-

processor and the subsequent evaluation of the fault coverage showed that

this fault model was adequate to account for all single stuck-at faults

in the instruction decoding and control function of this particular micro-

processor. We do not know how adequate the fault model would be for other

microprocessors, particularly the new 16-bit microprocessors. (Some of

them have an on-chip microprogrammed control unit.) Further research needs

to be directed towards evaluating the necessity of modeling other faults

such as the ones that give rise to partial execution of an instruction, J
or a change in the sequence of data flow involved in an instruction.

Furthermore, if the evaluation study points to the necessity of the improved

fault models, the next problem will be to describe the effects of these

faults at the level of the S-graph and then develop test generation proce-

dures to detect these faults.

Another important area of future research is to study the appli-

cability of the test sequences generated by the procedures of Chapter 4 in

a testing environment where the sophisticated tester required by our

approach cannot be used. For example, in field testing, the external

tester must be very simple and most of the testing tasks (such as comparing

the output result on a bus with the expected result) must themselves be

156

carried out by the microprocessor under test. Future research must be

directed towards investigating the modifications to the proposed test

generation procedures to make them suitable for field testing, or for the

so-called "self-testing" operations. Self-testing involves some hardcore,

i.e., that part of hardware which must be assumed to be fault free.

Therefore identification of che hardcore and its testing by an external

tester are two major problems that need to be solved for any self-testing

scheme.

Finally, future research needs to be directed towards the

challenging problem of design for testability. Architectural features

which enhance testability should be investigated. Allowing registers and

instructions with as low labels as possible (imparting high observability)

is obviously a step in the right direction. Such a solution might degrade

the performance of the microprocessor in yet unknown way. The underlying

testability-performance trade-offs should also be investigated.

I
157

REFERENCES

[Aker78] Akers, S. B., "Functional testing with binary decision diagrams,"

in Proc. of the 8th International Conference on Fault-Tolerant
Computing, Toulouse, France, IEEE Computer Society, pp. 75-82,
June 1978.

[Ande76] Anderson, R. E., "Microprocessor test mehtods change to meet
complex demands," Electronics, pp. 125-128, April 15, 1976.

[BaKi76] Batni, R. P. and C. R. Kime, "Module-level testing approach to
combinational circuits," IEEE Trans. on Computers, Vol. C-25,
pp. 594-604, June 1976.

(Ball79] Ballard, D. R., "Designing fail-safe microprocessor systems,"
Electronics, pp. 139-143, January'4, 1979.

[BrFr76] Breuer, M. A. and A. D. Friedman, Diagnosis and Reliable Design
of Digital Systems, Computer Science Press, Inc., 1976.

[ChMc76] Chiang, A. C. L. and R. McCaskill, "Two new approaches simplify
testing of microprocessors," Electronics, pp. 100-105, January 22,
1976.

[CMMe70] Chang, H. Y., E. G. Manning, and G. Metze, Fault Diagnosis of
Digital Sistems, Wiley-Interscience, New York, 1970.

[Cush77] Cushman, R. 71., "Fourth annual microprocessor directory," EDN,
Vol. 22, pp. 44-83, November 20, 1977.

[Dias76] Dias, F. J. 0., "Truth-table verification of an iterative
logic array," IEEE Trans. on Computers, Vol. C-25, pp. 605-613,
June 1976.

[FeeW78] Fee, W. G., "Tutorial LSI testing," Second Edition, IEEE
Computer Society, IEEE Catalog No. EHO 122-2, 1978.

[Flyn74] Flynn, M. J., "Trends and problems in computer organizations,"
IFIP Proceedings 1974, North-Holland Publishing Company, pp. 3-10.

[GsMc75] Gschwind, H. W. and E. J. McCluskey, Design of Digital Computers,
Springer-Verlag, New York, Inc., pp. 355-366, 1975.

[Haye76] Hayes, J. P., "Transition count testing of combinational logic
circuits," IEEE Trans. on Computers, Vol. C-25, pp. 613-620,
June 1976.

[HPJO77] "Signature analysis," Hewlett-Packard Journal, Vol. 28, No. 9,
May 1977.

158

[Hust741 Huston, R., "Microprocessor function test generation on the
Sentry 600," Fairchild Systems Technical Bulletin 4,
November 1974.

[INTE75] Intel 8080 Microcomputer Systems User's Manual, September 1975,
Santa Clara, California.

[Koha70] Kohavi, Z., Switching and Finite Automata Theory, Chapter 13,
McGraw-Hill Book Company, 1970.

[LiDo79] Lippman, M. D. and E. S. Donn, "Design forethought promotes
easier testing of microcomputer boards," Electronics,
pp. 113-119, January 18, 1979.

[Mann66] Manning, E., "On computer self-diagnosis: Part I and II,"
IEEE Trans. on Comouters, Vol. EC-15, pp. 873-890, December 1966.

[NTAb78] Nair, R., S. M. Thatte, and J. A. Abraham, "Efficient algorithms
for testing semiconductor random-access memories," IEEE Trans.
on Computers, Vol. C-27, pp. 572-576, June 1978.

[Powe69] Powell, T. S, "A module diagnostic procedure for combinational
logic," Coordinated Science Laboratory Report R-413, University
of Illinois, Urbana, Illinois, April 1969.

[RBSc67] Roth, J. P., W. G. Bouricius, and P. R. Schneider, "Programmed
algorithms to compute tests to detect and distinguish between
failures in logic circuits," IEEE Trans. on Computers, Vol. C-20,
pp. 1286-1293, November 1971.

!RoSa75] Robach, C. and G. Saucier, "Diversified test methods for local
control units," IEEE Trans. on Computers, Vol. C-24, pp. 562-567,
May 1975.

!RoSa78] Robach, C. and G. Saucier, "Dynamic testing of control units,"
IEEE Trans. on Computers, Vol. C-27, pp. 617-623, July,1978.

[Scol721 Scola, P., "An annotated bibliography of test and diagnostics,"
Honeywell Computer Journal, Vol. 6, 1972, pp. 97-102, and 105-162.

!TEST75] Various papers on microprocessor testing in the Digests of
Semiconductor Test Symposiums, Cherry Hill, N.J., IEEE Computer
Society, Oct. 14-16, 1975, Oct. 17-21, 1976, Oct. 25-27, 1977.

[ThAb78] Thatte, S. M. and J. A. Abraham, "A methodology for functional
level testing of microprocessors," in Proc. of the 8th International
Conference on Fault-Tolerant Computing, Toulouse, France,
IEEE Computer Society, pp. 90-95, June 1978.

I
159

A PPENDIX

We consider the behavior of a decoder (for a given valid input)

under a single stuck-at fault. The decoder is assumed to be realized

without any reconvergent fanout. This assumption is quite reasonable as

a decoder has n inputs and as many as 2n outputs. No other restriction

is imposed on its implementation.

Figure A.1 shows a schematic diagram of a decoder which has k

primary inputs labeled xl, x 2 , .. , Xk, and n primary outputs labeled

c 1 , c2 $.. . , where n ! 2k. The set of valid input vectors is a subset

of the set of all possible input vectors. Therefore, the set of valid

kinput vectors contains n : 2 input vectors. The set of valid input

vectors which activate output c. is denoted by X(ci). Since for any
1

given valid input vector one and only one output is activated IX(ci)I

and X(c.) n X(c.) = 0 if and only if c. c c..
31 J

Figure A.I also shows the last level of gates just before the

primary outputs. In order to maintain complete generality, each gate

is shown as a module and not as a specific gate (such as AND, OR, NOR or

NAND). These gates are labeled with the corresponding outputs. c.

becomes active if and only if all inputs to gate c. are active. (For AND1

and NAND gates, logic 1 is an active input; while for OR and NOR gates,

logic 0 is an active input.) If the output of gate ci is active, the

output of gate c, must be inactive (c. # c.). Thus when c. is active,
3 1

at least one input of gate c. must remain inactive to ensure that c. is

inactive. We can partition the inputs of gate c. into two sets, A(c.)

and 1(c), where A(c.) is the set of inputs of gate c. which are active

160

xl

Xk

Figure A.I. Schematic diagram of a decoder il'ustrating the
notation used in the proof of Theorem 3.1.

I
161

when output c. is active, and I(c .) is the set of inputs of gate c. which
i i 3

are inactive when output c. is active. Note that I(c.) i 5. We now
3.

prove Theorem 3.1 which is restated below for easy reference.

Theorem 3.1: If a decoder is realized without any reconvergent

fanout then under a single stuck-at fault its behavior can be formulated

independent of its implementation detail as follows: for a given valid

input to the decoder, instead of, or in addition to the expected output

some other output is activated, or no output is activated.

Proof: We prove the theorem by contradiction. Assume that

under a single stuck-at fault, the input vector X(ci) activates outputs

c. and c in addition to, or instead of c.. Therefore under the fault,

both I(c .) and I(¢ k) become active in addition to A(c.) and A(C Since
k k

there is only a single fault, the-inputs in I(c.) and I(c) can be traced

back to a line where the fault occurs. This line is denoted by f in

Figure A.I. (This could be a primary input line.) Since the decoder does

not have any reconvergent fanout, II(c)I = I and (c) moreover,
k

the primary inputs which can be traced back from the inputs in A(c) are

different from those which can be traced back from line f. Similarly, the

primary inputs which can be traced back from the inputs in A(c) are

different from those which can be traced back from line f. Thus, if there

is no fault in the decoder, the logic value on line f can be controlled by

changing the logic values only on those primary inputs which can be traced

back from line f, without changing the logic values on inputs in A(cl) and

, A(c').

A, We now consider the following "thought experiment" under the

fault free condition.

162

ii1-. Apply X(c.) This will also activate the inputs in A(c.) and

A (c)

2. If necessary, change the logic value on those primary inputs

which can be traced back from line f in order to activate line f, without

making the inputs in A(c.) or A(c) inactive.
i

This will make both I(c.) and l(c k) active which means that both

cj and ck will become active. Thus even though there is no fault in the

decoder, some valid input vector activates both cj and ck, which is

impossible.

Theorem A.l: If a decoder is realized without any reconvergent

fanout then under a single stuck-at fault if X(c i) activates c.j instead of,

or in addition to ci, X(c.) will activate only c..j

Proof: We prove this theorem also by contradiction.

i) First assume that under a single stuck-at fault X(ci) activates

c., instead of, or in addition to c., and X(c.) does not activate any
i

output. Therefore the inputs in I(c.) can be traced back to a line where

thd fault occurs. This line is denoted by f in Figure A.2. Since the

iidecoder does not have any reconvergent fanout,)I (c j)l = 1, and no input

in A(cl) can be traced back to line f. When X(cj) is applied no output

is activated; in particular c. is not activated. This can happen only if2

some input in A(c) can be traced back to another fault which keeps that

input permanently inactive; but this would violate the assumption of a

single stuck-at fault.

2) Now assume that under a single stuck-at fault X(c i) activates c,

instead of, or in addition to ci, and X(cj) activates ck, instead of, or

in addition to c.. Therefore, the inputs in I(c) and l(c J) can be
,k

163

C1

XI

X2•

•CI "C

Cn Cn

Figure A.2. Schematic diagram of a decoder illustrating the
notation used in the first part of the proof of
Theorem A.I.

164

traced back to a line where the fault occurs. This line is denoted by f

in Figure A.3. Since the decoder does not have any reconvergent fanout,

II(cI)I = 1 and Il(ck)I = I; moreover, the primary inputs which can be

traced back from the inputs in A(c.) are different from those which can

be traced back from line f. Similarly, the primary inputs which can be

traced back from the inputs in A(cj) are different from those which can

traced back from line f. Thus the logic value on line f can be controlled

by changing the logic values only on those primary inputs which can be

traced back from line f, without changing the logic values on inputs in

A(cl) and A(ck).

We now consider the following "thought experiment" when there is

a fault on line f as shown in Figure A.3.

1. Apply X(ci). This will also activate the inputs in A(c.). Due to

the fault on line f, the input in t(c.) also becomes active, consequently

activating c.. At this time some input(s) in A(c) must be inactive
k

because c k is not active.

2. Change the logic value on those primary inputs which can be

traced back from line f in order to activate line f (for this X(c.) needs

to be applied), without changing the logic values in A(c.) and A(c), i.e.,
3 kthe npus i A~~) nac ie.,

the inputs in A(c.) are active and some input(s) in A(cJ) are inactive.
2k

Thus we get in a situation where X(c.) does not activate ck

even though fault on line f exists, contradicting our assumption. 13

Corollarly A.1: If a decoder is realized without any reconver-

gent fanout then under a single stuck-at fault if X(c.) does not

activate any output, or activates ck' instead of, or in addition to c.,

no X(c q) will activate c., instead of, or in addition to c , for c q c..q 2 q 2

165!

•C 1.
C 1

X2

Ci
Ci

A (c;)

x2

C

(cil
Xk

CC

:#-
65"4b

Figure A.3. Schematic diagram of a decoder illustrating the
notation used in the second part of the proof of
Theorem A.I.

166

Proof: Follows directly from Theorem A.I.

Constraints 4 and 5 given in Section 3.2 are consistent with

Theorem A.1 and Corollary A.l.

167

VI TA

Satish Mukund Thatte was born in Poona, India on April 17, 1953.

He received the B.E. (Hons.) degree in Electronics Engineering from the

Birla Institute of Technology and Science, Pilani, India in 1973. At the

Birla Institute of Technology and Science he received the Gold Medal for

the best academic record in all branches of engineering in the graduating

class of 1975. In 1977 he received the M.S. degree in Electrical

Engineering from the University of Illinois at Urbana-Champaign. He was

a graduate teaching assistant in the Department of Electrical 'Engineering

from August 1975 to December 1975 and a graduate research assistant with

the Fault-Tolerant Systems and Computer Architecture group at the

Coordinated Science Laboratory from January 1976 to May 1979. He is

listed in the 1979 Edition of Who's Who in Technology Toddy.

